

KUKA System Technology

KUKA Roboter GmbH

KUKA.LaserTech 3.1

For KUKA System Software 8.3

Issued: 18.09.2013

Version: KST LaserTech 3.1 V1

© Copyright 2013 KUKA Roboter GmbH Zugspitzstraße 140 D-86165 Augsburg Germany

This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without the express permission of KUKA Roboter GmbH.

Other functions not described in this documentation may be operable in the controller. The user has no claims to these functions, however, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software described. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to guarantee total conformity. The information in this documentation is checked on a regular basis, however, and necessary corrections will be incorporated in the subsequent edition.

Subject to technical alterations without an effect on the function.

Translation of the original documentation

KIM-PS5-DOC

Publication: Book structure: Version: Pub KST LaserTech 3.1 (PDF) en KST LaserTech 3.1 V1.2 KST LaserTech 3.1 V1

Contents

1	Introduction	7			
1.1	Target group	7			
1.2	Industrial robot documentation	7			
1.3	Representation of warnings and notes	7			
1.4	Terms used	8			
1.5	Trademarks	8			
2	Product description	9			
2.1	LaserTech – overview	9			
2.2	Laser power and path velocity	9			
2.3	Intended use	10			
3	Safety	13			
4	Installation	15			
4.1	System requirements	15			
4.2	Installing or updating KUKA.LaserTech	15			
4.3	Uninstalling LaserTech	16			
5	Operation	17			
5.1	Menus	17			
5.2	Basic laser function status keys	17			
5.3	LaserCut status keys	18			
6	Start-up and configuration	21			
6.1	Overview	21			
6.2	Variables for configuration of LaserTech	21			
6.3	Laser program	22			
6.4	Configuring gas types for inline forms	23			
6.5	Configuring the inputs/outputs for gases and other properties	24			
6.6	Configuring the pilot laser	25			
6.7	Modifying maximum values for ramp times	26			
7	Programming for user group "User" (inline forms)	27			
7.1	Programming with spline	27			
7.2	Programming tips for KUKA.LaserTech	27			
7.2.1	Defining delay times	28			
7.3	Programming laser functions	29			
7.3.1	Inline form "Activate process"	29			
7.3.2	•	31			
7.3.3	•	33			
7.3.4	•	35			
7.3.5	•	36			
7.3.6		37			
7.3.7		38 39			
7.3.8					
7.3.9					
7.3.10					
7.3.1′	1 Option window "Laser data" – Switch process	42			

KUKA.LaserTech 3.1

7.3.12	Option window "Laser data" – Deactivate process (via time)
7.3.13	Option window "Laser data" – Deactivate process (via distance)
7.3.14	Option window – user-defined data set
7.3.15	Option window "Step parameters"
7.3.16	Option window "Laser data" – "Laser test pulse"
7.4 P	rogramming laser control
7.4.1	Inline form "Initialize laser"
7.4.2	Inline form "Enable laser"
7.4.3	Inline form "Laser off"
7.4.4	Inline form "Laser request"
7.4.5	Option window "Gas selection" – laser welding
7.4.6	Option window "Gas selection" – laser cutting
7.4.7	Option window "Laser network" – "Initialize laser"
7.5 P	rogramming media control
7.5.1	Inline form "Switch gas"
7.5.2	Inline form "Initialize gas"
7.5.3	Inline form " Cut wire "
7.6 P	rogramming sensor control
7.6.1	Inline form "Switch sensor"
7.6.2	Inline form "Sensor settings"
7.7 P	rogramming laser cutting
7.7.1	Inline form "Rectangle", "Slot", "Hexagon", "Circle"
7.7.2	Option windows "Geometry data" and "Geo motion data"
7.7.3	Option window: Frames
7.7.4	Option window "Media data" – activating laser cutting
7.7.5	Option window "Media data" – switching laser cutting
7.7.6	Option window "Media data" – deactivating laser cutting
7.7.7	Option window "Laser data" – Rectangle, Slot, Hexagon, Circle
7.7.8	Option window "Sensor parameters" and "Process parameters"
8 E	xample programs
	xample program: step seam
-	xample program: gas and laser welding functions
	xample program: set piercing and cutting data
	xample program: piercing function
9 F	rogramming for system integrators
9.1 C	onfiguring user-defined applications
9.1.1	Changing list entries in the inline forms
9.1.2	Changing parameter names and units in the option window
9.2 Ir	tegration of user-defined functions
9.3 Ir	terfaces for functional expansions
9.3.1	Interface to the laser process LSR_Tech_IFC
9.3.2	Interface to the laser control LSR_Tech_IFC
9.3.3	Interface to media LSR_Media_IFC
9.3.4	Interface to error handling LSR_ERR_IFC
10 N	lessages
10.1 B	asic laser function messages

10.2	aserCut messages				
10.3	LaserWeld messages	79			
11	Appendix	81			
11.1	Configuring LaserTech	81			
11.1.	LaserTech: analog inputs/outputs, interrupts, timers and cyclical flags	81			
11.1.2	2 LaserTech: signal outputs to the laser	82			
11.1.3	3 LaserTech: signal inputs from the laser	83			
11.1.4	LaserTech: signal outputs to the welding periphery	84			
11.1.	5 LaserTech: signal inputs from the welding periphery	85			
11.1.6	LaserTech: system outputs and system flags	85			
11.1.7	7 LaserTech: process options	86			
11.1.8	3 LaserTech: process constants	88			
11.2	Configuring LaserWeld	90			
11.2.	LaserWeld: analog inputs/outputs	90			
11.2.2	2 LaserWeld: signal outputs to the wire feed system	90			
11.2.3	LaserWeld: signal inputs from the wire feed system	91			
11.2.4	LaserWeld: process constants	91			
11.3	Configuring LaserCut	93			
11.3.	LaserCut: analog inputs/outputs	93			
11.3.2	2 LaserCut: signal outputs to the sensor	93			
11.3.3	B LaserCut: signal inputs from the sensor	94			
11.3.4	LaserCut: process constants	95			
12	KUKA Service	97			
12.1	Requesting support	97			
12.2	KUKA Customer Support	97			
	Index	105			

κιικα

Introduction 1

1.1 **Target group**

This documentation is aimed at users with the following knowledge and skills:

- Advanced KRL programming skills
- Advanced knowledge of the robot controller system
- Advanced knowledge of the laser controller systems
- Knowledge of the other peripheral controller systems (e.g. distance con-troller)
- Knowledge of field bus interfaces

For optimal use of our products, we recommend that our customers take part in a course of training at KUKA College. Information about the training program can be found at www.kuka.com or can be obtained directly from our subsidiaries.

1.2 Industrial robot documentation

The industrial robot documentation consists of the following parts:

- Documentation for the manipulator
- Documentation for the robot controller
- Operating and programming instructions for the control software
- Instructions for options and accessories
- Parts catalog on storage medium

Each of these sets of instructions is a separate document.

1.3 Representation of warnings and notes

Safety

These warnings are relevant to safety and **must** be observed.

A DANGER are taken.	These warnings mean that it is certain or highly probable that death or severe injuries will occur, if no precautions
	These warnings mean that death or severe injuries may
	occur, if no precautions are taken.
	These warnings mean that minor injuries may occur, if no precautions are taken.
NOTICE	These warnings mean that damage to property may oc- cur, if no precautions are taken.
	nings contain references to safety-relevant information or fety measures.
These war	nings do not refer to individual hazards or individual pre-

These warnings do not refer to individual hazards or individual precautionary measures.

This warning draws attention to procedures which serve to prevent or remedy emergencies or malfunctions:

SAFETY INSTRUCTIONS Procedures marked with this warning **must** be followed exactly.

Notes

These hints serve to make your work easier or contain references to further information.

	Tip to make your work easier or reference to further information.
1	Tip to make your work easier or reference to further information.

1.4 Terms used

Term	Description
CrossJet	Gas that keeps the lens of the laser free of dirt.
Laser program	Program executed in the laser controller.
Process gas	The process gas keeps the welding site free from oxy- gen, thereby protecting the seam against oxidation.
Root gas	Process gas that protects the seam against oxidation from beneath. Only relevant in the case of through- welding of the plate and if gas can be fed in from underneath.

1.5 Trademarks

TruControl is a trademark of Trumpf.

Κυκα

2 Product description

2.1 LaserTech – overview

Functions

LaserTech is an add-on technology package with the following functions:

- Configuration and programming of laser applications (standard LaserTech package)
- Configuration and programming of laser cutting applications (LaserCut)
- Configuration and programming of laser welding applications with/without filler wire (LaserWeld)
- Configuration and programming of up to 3 user-defined laser applications

The backwards movement option is deactivated when working with this technology package.

Areas of application

Laser welding

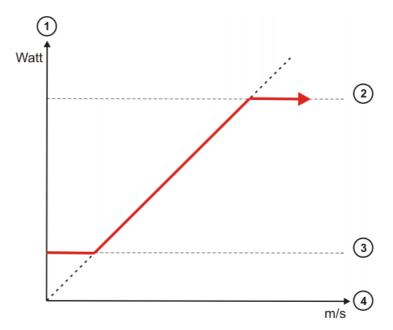
Laser cutting

 LaserTech can be expanded for further user-defined applications, e.g. powder surfacing

KUKA.LaserTech supports the following systems:

- TRUMPF laser controllers
- PRECITEC distance controllers (for laser cutting)

For information about adaptation for systems from other manufacturers, please contact KUKA Customer Support. (>>> 12 "KUKA Service" Page 97)


Communication The robot controller communicates with the laser controller via a field bus.

2.2 Laser power and path velocity

In LaserTech, a weld program is executed by default with a constant laser power. The variable LSR_UsePwrVelCtrld can be used to configure whether the laser power is regulated proportionally to the robot velocity. This means: if the programmed robot velocity is not reached, LaserTech reduces the laser power accordingly.

The proportionality is restricted by the upper and lower power limits of the laser. The lower power limit of the laser is always > 0, as the laser power cannot be regulated down to 0.

Κυκα

Fig. 2-1: Relationship between velocity and laser power

- 1 Laser power in watts
- 2 Upper laser power limit
- 3 Lower laser power limit
- 4 Velocity in m/s

2.3 Intended use

ι	se

LaserTech is intended exclusively for industrial operation in an enclosed cell conforming to the applicable laser protection conditions and safety standards.

The system integrator must ensure that the robot system is installed and operated in an environment that is suitable for laser applications. In particular, it is important to consider the hazards which could arise from incorrect user programming and unintended activation of the laser, e.g. with the result that the laser hits the cell wall or fixture.

WARNING It must be ensured that no persons are present in the cell when the laser is enabled or active. Severe injuries may otherwise result.

Operation in accordance with the intended use also involves compliance with the start-up and configuration instructions in this documentation.

Misuse Any use or application deviating from the intended use is deemed to be impermissible misuse. The manufacturer cannot be held liable for any damage resulting from such use. The risk lies entirely with the user.

Examples of such misuse include:

- Bypassing of protective mechanisms such as the safety door and safety circuit of the laser
- Programming the application in a such a way that the enabled laser beam does not hit the intended area, e.g. the workpiece, but the cell wall or fixture.
- Program execution (T2, AUT, EXT) without a workpiece in the fixture. This
 can result in the laser beam directly hitting the fixture.
- Activation of the laser by setting inputs/outputs in test mode (T1, T2) with the safeguard closed.

Use in non-industrial systems

3 Safety

This documentation contains safety instructions which refer specifically to the software described here.

The fundamental safety information for the industrial robot can be found in the "Safety" chapter of the Operating and Programming Instructions for System Integrators or the Operating and Programming Instructions for End Users.

The "Safety" chapter in the operating and programming instructions of the KUKA System Software (KSS) must be observed. Death to persons, severe injuries or considerable damage to property may otherwise result.

The safety standards must be observed when working with the laser. Injuries or damage to property may otherwise result. For further information and specification of the laser class, please refer to the documentation of the laser manufacturer.

The safety measures of the laser system must be observed when wiring the system. In particular the EMERGENCY STOP circuit and operator safety must be wired correctly before this software is used. Injuries or damage to property may otherwise result. The safety measures of the laser system can be found in the documentation of the laser manufacturer.

Κυκα

4 Installation

4.1 System requirements

Hardware

- KR C4
- KUKA field bus cards (Interbus or PROFIBUS)
- Specific components for the application

Software

KUKA System Software 8.3

4.2 Installing or updating KUKA.LaserTech

It is advisable to archive all relevant data before updating a software package. Preparation Copy software from CD to KUKA USB stick. The software must be copied onto the stick with the file Setup.exe at the highest level (i.e. not in a folder). Recommendation: Use a KUKA stick. Data may be lost if NOTICE any other stick is used. Precondition "Expert" user group Procedure 1. Connect the USB stick to the robot controller or smartPAD. 2. In the main menu, select Start-up > Additional software. 3. Press New software. The entry LaserTech must be displayed in the Name column and drive E:\ or K:\ in the Path column. If not, press Refresh. 4. If the specified entries are now displayed, continue with step 5. If not, the drive from which the software is being installed must be configured first: Press the **Configuration** button. A new window opens. **11** Select a line in the Installation paths for options area. **Note:** If the line already contains a path, this path will be overwritten. Press Browse. The available drives are displayed. Select E:\. (If stick connected to the robot controller.) **11** Or select K:\. (If stick connected to the smartPAD.) Press Save. The window closes again. The drive only needs to be configured once and then remains saved for further installations. 5. Mark the entry **LaserTech** and click on **Install**. Answer the request for confirmation with Yes. 6. Confirm the reboot prompts with OK. 7. Remove the stick. 8. Reboot the robot controller. On rebooting, a reminder is displayed about installing the LaserWeld and LaserCut options. If the reminder should not be displayed again, select No longer ask.

During installation of LaserTech, the LaserWeld and LaserCut options are copied to the directory D:\KUKA_OPT. If required, the options must be installed separately from this directory.

KUKA.LaserTech 3.1

LOG file A LOG file is created under C:\KRC\ROBOTER\LOG.

Uninstalling LaserTech 4.3

	It is advisable to archive all relevant data before uninstalling a soft- ware package.
Precondition	 "Expert" user group
Procedure	 Select Start-up > Install additional software in the main menu. All addi- tional programs installed are displayed.
	Depending on which part of the technology package is to be uninstalled, select the corresponding entry:
	LaserTech: select the entry LaserTech.
	LaserWeld: select the entry LaserWeld.
	LaserCut: select the entry LaserCut.
	 Press Uninstall. Reply to the request for confirmation with Yes. Uninstal- lation is prepared.
	4. Reboot the robot controller. Uninstallation is resumed and completed.
LOG file	A LOG file is created under C:\KRC\ROBOTER\LOG.

5 Operation

Κυκα

5 Operation

5.1 Menus

The following menus and commands are specific to this technology package: Main menu:

- Configuration > Status keys
 - LaserTech
 - Laser Cut

Menu sequence Commands > LaserTech

- Switching
 - Activate process
 - Switch process
 - Deactivate process
 - Step seam
 - Laser test pulse
- Control commands
 - Initialize laser
 - Enable laser
 - Laser off
 - Laser request
- Media control
 - Switch gas
 - Initialize gas
 - Cut wire
- Sensor control
 - Switch sensor
 - Sensor settings
- Cutting
 - Rectangle
 - Slot
 - Hexagon
 - Circle

5.2 Basic laser function status keys

Select **Configuration > Status keys > LaserTech** in the main menu to display the status keys.

For safety reasons, the status keys are deactivated. To activate them, the enabling switch on the smartPAD must be pressed.

The status keys are not available in Automatic External mode.

	Off	On	Inactive	Description
Laser	×	₩	*	The status key "Laser off" is dis- played: the program is executed without laser power. The status key "Laser on" is dis- played: the program is executed with laser power.
Pilot laser	X	6	•	Pressing "Pilot laser off" switches the pilot laser on. Pressing "Pilot laser on" switches the pilot laser off.
Gas				Pressing "Gas off" activates the process gas, root gas and Cross- Jet. Releasing the status key stops the flow of gas. Note : When process gas, root gas and CrossJet is activated, the high pressure of the emerg- ing gas may result in injuries and in material damage to sensitive system components. Do not aim the gas at the body.
Wire	*	₽	*	Pressing "Wire off" activates the wire feed. Releasing the status key stops the wire feed. Note : Welding wire emerging from the wire feeder can cause injuries to hands, face and eyes. Be sure to maintain a safe dis- tance.

5.3 LaserCut status keys

Select **Configuration > Status keys > Laser Cut** in the main menu to display the status keys.

For safety reasons, the status keys are deactivated. To activate them, the enabling switch on the smartPAD must be pressed.

The status keys are not available in Automatic External mode.

	Off	On	Inactive	Description
Sensor	X	Å	V	Status key "Sensor off" is dis- played: the sensor functions are inactive. Status key "Sensor on" is dis- played: the sensor functions are active.
Distance control	¥	¥	T	Pressing "Distance control Off" switches distance control on. Pressing "Distance control On" switches distance control off.

5 Operation KUKA

	Off	On	Inactive	Description
Reference run	_	V		Pressing "Reference run on" starts a reference run.
Sensor in position		ÂĨ	VI	Pressing "Sensor in position" moves the sensor to the "pro- grammed position".

6 Start-up and configuration

6.1 Overview

Step	Description
1	Install and prepare the laser controller; in particular: prepare the laser program.
	(>>> 6.3 "Laser program" Page 22)
2	Configure the field bus between the robot controller and the laser controller in WorkVisual.
3	Configure the inputs and outputs to integrate the required peripheral equipment.
	 Laser and other peripheral welding equipment (standard LaserTech package)
	 Wire feed system (LaserWeld)
	 Sensor system (LaserCut)
	(>>> 6.2 "Variables for configuration of LaserTech" Page 21)
4	Calibrate the tool and base.
5	Configure gas types for inline forms.
	(>>> 6.4 "Configuring gas types for inline forms" Page 23)
6	Configure the inputs/outputs for gases and other properties.
	(>>> 6.5 "Configuring the inputs/outputs for gases and other properties" Page 24)
7	Configure the program number for the pilot laser.
	(>>> 6.6 "Configuring the pilot laser" Page 25)
8	If required: modify the maximum values for ramp times.
	(>>> 6.7 "Modifying maximum values for ramp times" Page 26)
9	If required: expand the technology for user-defined applica- tions.
	(>>> 9.1 "Configuring user-defined applications" Page 67)
	(>>> 9.2 "Integration of user-defined functions" Page 68)

6.2 Variables for configuration of LaserTech

The variables for configuring LaserTech are described in the appendix.

Some of these variables, e.g. the process options, can be displayed and changed via the variable correction function.

To configure the inputs and outputs for interfacing with the peripheral equipment, the \$CONFIG.DAT file in the directory R1\System must be edited.

Overview

BASISTECH GLOBALS
AUTOEXT GLOBALS
LASERTECH GLOBALS
LASER OUTPUTS
LASER INPUTS
INTEGRATION peripheri devices
LASERWELD GLOBALS
LASERCUT GLOBALS
USER GLOBALS

Fig. 6-1: Folds in \$CONFIG.DAT

Line	Description
3 7	LASERTECH GLOBALS
	Here the inputs/outputs are configured which are used by the standard LaserTech package.
	LASER OUTPUTS
	(>>> 11.1.2 "LaserTech: signal outputs to the laser" Page 82)
	LASER INPUTS
	(>>> 11.1.3 "LaserTech: signal inputs from the laser" Page 83)
	 INTEGRATION peripheri devices
	(>>> 11.1.5 "LaserTech: signal inputs from the welding periphery" Page 85)
	 (>>> 11.1.4 "LaserTech: signal outputs to the welding pe- riphery" Page 84)
9	LASERWELD GLOBALS
	Here the inputs/outputs are configured which are used by LaserWeld.
	 OUTPUTS WIREFEEDER
	(>>> 11.2.2 "LaserWeld: signal outputs to the wire feed system" Page 90)
	WIRE CONTROL> PLC
	(>>> 11.2.2 "LaserWeld: signal outputs to the wire feed system" Page 90)
	INPUTS WIREFEEDER
	(>>> 11.2.3 "LaserWeld: signal inputs from the wire feed system" Page 91)
10	LASERCUT GLOBALS
	Here the inputs/outputs are configured which are used by LaserCut.
	(>>> 11.3.2 "LaserCut: signal outputs to the sensor" Page 93)
	(>>> 11.3.3 "LaserCut: signal inputs from the sensor" Page 94)

Laser program 6.3

On the laser controller there must be a laser program which can read in the parameters from an external controller (robot).

#	0 0	Pulsart	P[W]	t[ms]	AR	f[Hz]	₽>	分	D	tyn.	'n
001	S1H						•	IW			
002	W1H	Rechteck	IW04	IW05	1	1,00	▶	IW		IW06	IWO
003		Dauerstric	IW03				▶	IW			
004	W1L	Rechteck	IW04	IW05	1	1,00	▶	IW		IW0 8	IWO
005	S1L						₽>	IW			
Zei einfüg	gen à	Zeile Zeile indern löschen	Eigen ände	rn ände	rn S	peichern	» Schli)) ießen			

Fig. 6-2: Required laser program (example)

6.4 Configuring gas types for inline forms

Description	In the file C:\KRC\TP\LaserTech\LIB\LsrTech.XML, the user defines how many types of which gas are to be available in the inline forms. The names displayed in the inline forms for the gases can also be changed.
	A maximum of 12 types of gas can be configured.
Precondition	"Expert" user groupWindows interface (smartHMI is minimized).
	Only the changes described in the procedure may be made in the file LsrTech.XML!
Procedure	1. Open the file C:\KRC\TP\LaserTech\LIB\LsrTech.XML.
	2. Find the section for gases in the file.
	Process gases: section ProcessGas
	Root gases: section RootGas
	Cutting gases: section CutGas
	3. To change the name of a gas, modify a value of EnumValue Key.
	 To add a gas, copy a line that starts with EnumValue Key and paste it after the other lines. Renumber the values of KrlValue="" and Or- derID="".
	 Close the file by means of the Close icon and answer the request for con- firmation with Yes. The file is saved.
Example	Excerpt from the ProcessGas section. The structure of the sections for the other gases is analogous.

•••
<techparam <="" name="ProcessGas" td="" xsi:type="TechParamEnum"></techparam>
<enumvalues max="12"></enumvalues>
<enumvalue <="" key="Gas1" krlvalue="1" orderid="0" td=""></enumvalue>
VisibleStyle="Allways"/>
<enumvalue <="" key="Gas2" krlvalue="2" orderid="1" td=""></enumvalue>
VisibleStyle="Allways"/>
<enumvalue <="" key="Gas3" krlvalue="3" orderid="2" td=""></enumvalue>
VisibleStyle="Allways"/>
<enumvalue <="" key="Gas4" krlvalue="4" orderid="3" td=""></enumvalue>
VisibleStyle="Allways"/>

Configuring the inputs/outputs for gases and other properties 6.5

Precondition	 "Expert" user group 					
	 No program is selecte 	d.				
Procedure	1. Open the desired file.					
	Process gases: R1\TP\LaserTech\laser.dat					
	Open the Process Gas Settings fold .					
	Cutting gases: R1\TP\LASERCUT\lsc_main.dat					
	Open the Cut Ga	-				
	Root gases: R1\TP\LaserTech\laser.dat					
	Open the Root Gas Settings fold .					
	2. Edit the file.					
	 Close the file by mean firmation with Yes. The 	s of the Close icon and answer the request for con- e file is saved.				
-		s Gas Settings fold in the file laser.dat. The ex- operties defined. The structure of the folds in the oth-				
		1024, IN_NR 1025, ANA_GAS_OUT TRUE, FALSE, ANA_MAX_VALUE 30.0, GAS_NAME[] "NONE"}				
	The configuration depends	s on whether a proportional gas valve is used.				
Without valve	LSR_PropGasValve = FA	LSE				
	Element	Description				
	OUT_NR	Number of the digital output that is used to activate the gas				
	IN_NR	Number of the digital input that is used to indi- cate that the gas has been activated				
	ANA_GAS_OUT	Only FALSE meaningful.				
		FALSE = this gas does not use a proportional gas valve.				
	ANA_GAS_IN	The currently measured gas pressure is returned to this analog channel.				
	Extllf	TRUE = advanced monitoring. Not only IN_NR is polled, but also the actual analog value of the gas pressure.				
	ANA_MAX_VALUE	Maximum gas pressure. This value is irrelevant.				
	GAS_NAME[]	Name of the gas (default: "NONE")				
		Changing the name does not have any effect.				

Κυκα

With valve

LSR_PropGasValve = TRUE

Element	Description
OUT_NR	Number of the digital output that is used to activate the gas
	Note : The number of the analog channel is defined via the variable LSRI_GasPressure
IN_NR	Number of the digital input that is used to indi- cate that the gas pressure is OK
	Note : The number of the analog channel is defined via the variable LSRI_GasPressure
ANA_GAS_OUT	TRUE = this gas uses a proportional gas valve.
	FALSE = this gas does not use a proportional gas valve.
ANA_GAS_IN	The currently measured gas pressure is returned to this analog channel.
Extllf	TRUE = advanced monitoring. Not only IN_NR is polled, but also the actual analog value of the gas pressure.
ANA_MAX_VALUE	Maximum gas pressure transferred by the laser controller. If a higher value is set in the inline form, the lower value set here nonetheless applies.
	Unit: bar. Value must be greater than 0.0.
GAS_NAME[]	Name of the gas (default: "NONE")
	Changing the name does not have any effect.

6.6 Configuring the pilot laser

Description

In the file R1\TP\LaserTech\laser.dat, the program number is defined that is to be selected internally when the pilot laser is switched on using the status key. The program number must be present in the laser controller.

Precondition

- "Expert" user group
- No program is selected.

Procedure

- 1. Open the file R1\TP\LaserTech\laser.dat.
- 2. Open the Temporary Process Setting fold. In the following declaration, specify the desired program number for the element LSR PRG.

DECL GLOBAL LSR_PWR_T LSR_LsrPilotSet={LSR_MAX_PWR 2000, LSR_MIN_PWR 1,LSR_PRG 20,LSR_RAISE_TIME 1,LSR_DROP_TIME 1}

In this example, laser program 20 is selected (LSR_PRG 20). In order to be able to use the pilot laser, there must be a program with the number 20 on the laser controller.

The correct fiber number must be entered in the laser program that is selected here. Otherwise it is possible that the pilot laser will not be visible.

3. Close the file by means of the **Close** icon and answer the request for confirmation with **Yes**. The file is saved.

6.7 Modifying maximum values for ramp times

Description	The ramp time when switching on (Laser power rise time) is programmed in the option window Laser data – Activate process.
	(>>> 7.3.9 "Option window "Laser data" – Activate process/Step seam (via time)" Page 40)
	The ramp time when switching off (Laser power drop time) is programmed in the option window Laser data – Deactivate process.
	(>>> 7.3.12 "Option window "Laser data" – Deactivate process (via time)" Page 42)
	The maximum values that can be set in the option windows can be modified in the registry.
Precondition	 "Expert" user group Windows interface (smartHMI is minimized). Administrator privileges on the Windows user interface
Procedure	 In the Windows Start menu, select Run In the Open box, enter "regedit" and press OK. The Registry editor window opens. Select the following folder under "HKEY_CURRENT_USER\Software\VB and VBA Program Settings\KUKATPLASER\" in the tree structure: LSR_DROP_TIME (for ramp time when switching off) LSR_RAISE_TIME (for ramp time when switching on) Click on the parameter Max and select Change. Enter the desired value and confirm it by pressing OK.
	5. Enter the desired value and commit it by pressing UK .

6. Reboot the robot controller with a cold restart.

Κυκα

7 **Programming for user group "User" (inline forms)**

NOTICE Following creation of a laser program or modification of laser and motion commands, the program sequence, the actual switching points of the laser and the periphery must be checked. Damage to the system may otherwise result.

7.1 **Programming with spline**

Overview

The overview shows which LaserTech commands can be used in spline blocks.

Command	Usable in spline block?
Activate process	Yes
Switch process	Yes
Deactivate process	Yes
Step seam	Yes
Laser test pulse	No
Initialize laser	No
Enable laser	Yes
Laser off	No
Laser request	No
Switch gas	Yes
Initialize gas	No
Cut wire	No
Switch sensor	Yes
Sensor settings	Yes
Rectangle, Slot, Hexagon, Circle	No

7.2 Programming tips for KUKA.LaserTech

Power ramps	Power ramps can be defined over time or over distance. Which of the two func- tionalities is available depends on whether the laser is switched on and off in- side or outside of a spline block.				
	 Laser is switched on/off within a spline block: Power ramps are defined via distance, e.g. the length of the power rise on switching on the laser. 				
	Laser is switched on/off outside a spline block:				
	Power ramps are defined via time, e.g. the rise time of the laser power on switching on the laser.				
Delay times	(>>> 7.2.1 "Defining delay times" Page 28)				
Standstill monitoring	If the robot is stationary and the laser power is active, the shutter automatically closes after a defined time. This time is defined via the variable LSR_Stop_InspectionTime. The purpose is to prevent the laser from burning through the material.				
	If welding is to be carried out for longer at a specific position, i.e. without robot motion, the value of LSR_Stop_InspectionTime must be increased.				
	(>>> 11.1.8 "LaserTech: process constants" Page 88)				

NOTICE If the value of LSR_Stop_InspectionTime is changed or if the option is deactivated, this can result in damage to the system.

If a laser pulse is generated using the instruction **Laser test pulse**, standstill monitoring is not active.

Switching points Program switching points in phases in which the velocity is as constant as possible.

If a switching action is to be carried out before the taught point, the approximate positioning radius must be selected in such a way that the action is executed in the approximate positioning range of the point.

To generate full circles, it is advisable not to teach the coordinates, but to calculate them.

If the KUKA.ExpertTech technology package is available, use the specification CA for the circular angle.

7.2.1 Defining delay times

Description

Circles

The delay times are defined using the following variables:

- Delay time when switching on = LSR_ShutterDelayConst + LSR_ShutterOn
- Delay time when switching off = LSR_ShutterDelayConst + LSR_ShutterOff
- Delay time when switching over = LSR_ShutterDelayConst -LSR_ShutterOn

(>>> 11.1.8 "LaserTech: process constants" Page 88)

These variables are only used to compensate for delay times. They must not be used to offset switching points.

NOTICE If laser programs are already present and the delay times are changed, this can cause the activation and deactivation points of the laser to be shifted so far that damage to the device or other system components can result. Check existing programs following a modification.

Procedure

1. Program the weld seams.

- 2. Determine the required delay times empirically.
- 3. Change the following variables in the variable correction function, in accordance with the determined times:
 - LSR_ShutterDelayConst
 - LSR_ShutterOn
 - LSR_ShutterOff
- 4. For the other weld velocities, adapt the switching points by means of the Path specification in the inline forms.

Example 1

- Required delay:
- When switching on: 80 ms
- When switching off: 50 ms
- When switching over: 20 ms

Define variables:

LSR_ShutterDelayConst = 50

- LSR_ShutterOn = 30
- LSR_ShutterOff = 0

Example 2

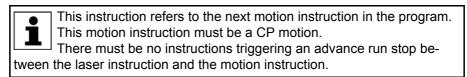
- When switching on: 80 ms
- When switching off: 50 ms
- When switching over: 0 ms

If the delay when switching over is to be 0 ms, LSR_ShutterDelayConst and LSR_ShutterOn must always have the same value.

Define variables:

Required delay:

- LSR_ShutterDelayConst = 40
- LSR_ShutterOn = 40
- LSR_ShutterOff = 10


7.3 Programming laser functions

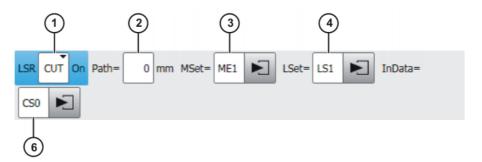
7.3.1 Inline form "Activate process"

Call

Select the menu sequence Commands > LaserTech > Switching > Activate process.

Description This instruction switches the laser on.

The CP motion to the laser activation position is generally approximated. In the case of exact positioning to the point, the laser is aimed at the point for longer than in the case of approximate positioning. This means that more energy is directed onto the point than is generally desirable.


If the CUT application is selected, the piercing and cutting data for laser cutting can optionally be defined.


If the piercing and cutting data are defined, the instruction calls a piercing function that implicitly activates the distance sensor. In this case, the instruction replaces the instruction **Switch sensor**.

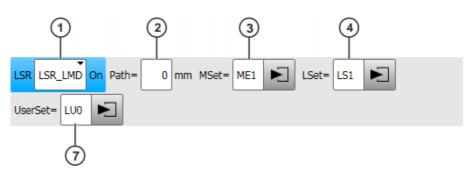

(>>> 7.6.1 "Inline form "Switch sensor" Page 52)

Fig. 7-1: Inline form "Activate process" (with Weld)

Item	Description
1	Selects an application.
	 [Empty box]: Only displayed if LaserWeld is not installed. WELD: Laser welding (with wire feed)
	CUT: Laser cutting
	 USR_LSR, USR_TCH, USR_LMB: Up to 3 user-defined appli- cations possible (default entries)
2	Shifts the activation point of the laser.
	-100 100 mm
	Note : If the activation point is shifted to the wrong point, this can result in damage to the device or other system components.
3	Name for the media data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	For the applications [Empty box] and WELD:
	(>>> 7.3.6 "Option window "Media setting" – activating laser welding" Page 37)
	For the application CUT and user-defined applications:
	(>>> 7.7.4 "Option window "Media data" – activating laser cut- ting" Page 59)
4	Name for the laser data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	If the instruction is outside a spline block:
	(>>> 7.3.9 "Option window "Laser data" – Activate process/ Step seam (via time)" Page 40)
	If the instruction is within a spline block:
	(>>> 7.3.10 "Option window "Laser data" – Activate process/ Step seam (via distance)" Page 41)

Item	Description
5	Only relevant for WELD application:
	Use of filler wire
	Check box active: Use filler wire.
	Check box not active: Do not use filler wire.
6	Only relevant for the CUT application:
	Name for the piercing and cutting data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	(>>> 7.7.8 "Option window "Sensor parameters" and "Process parameters" Page 61)
	This box can be displayed or hidden using the Add Cut and Rem Cut buttons.
7	Only relevant for user-defined applications:
	Name for the user-defined data set (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	(>>> 7.3.14 "Option window – user-defined data set" Page 44)

If the gas is activated with the **Switch gas** instruction before the **Activate process** instruction and the setting "Continuous" is activated, the robot controller ignores the media data of the **Activate process** instruction ("Gas pressure" and "Gas preflow time"). (>>> 7.5.1 "Inline form "Switch gas"" Page 50) If there is no preceding **Switch gas** instruction with the setting "Continuous", the gas is activated by the **Activate process** instruction.

7.3.2 Inline form "Switch process"

Call

Select the menu sequence Commands > LaserTech > Switching > Switch process.

Description This instruction is used to modify the weld parameters within a weld path. The monitoring functions of the laser and weld media remain active following this instruction. If the application WELD is selected, the wire is fed further.

This instruction refers to the next motion instruction in the program. This motion instruction must be a CP motion.

There must be no instructions triggering an advance run stop between the laser instruction and the motion instruction.

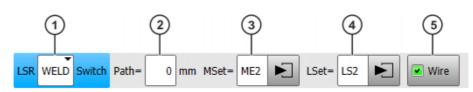


Fig. 7-4: Inline form "Switch process" (with Weld)

ΚυκΑ

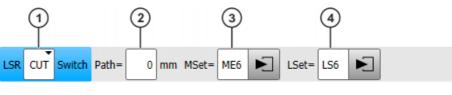


Fig. 7-5: Inline form "Switch process" (with Cut)

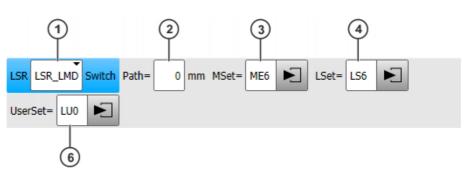


Fig. 7-6: Inline form "Switch process" (with UserSet)

Item	Description
1	Selects an application.
	[Empty box]: Only displayed if LaserWeld is not installed.
	 WELD: Laser welding (with wire feed)
	CUT: Laser cutting
	 USR_LSR, USR_TCH, USR_LMB: Up to 3 user-defined appli- cations possible (default entries)
2	Shifts the switching point of the laser.
	-100 100 mm
3	Name for the media data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	For the applications [Empty box] and WELD:
	(>>> 7.3.7 "Option window "Media setting" – switching laser welding" Page 38)
	For the application CUT and user-defined applications:
	(>>> 7.7.5 "Option window "Media data" – switching laser cut- ting" Page 59)
	Note : This box is only displayed if velocity-dependent laser power is activated (LSR_UsePwrVelCtrld = TRUE) or if filler wire is used for laser welding (Wire check box activated).
4	Name for the laser data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	(>>> 7.3.11 "Option window "Laser data" – Switch process" Page 42)

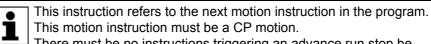
Item	Description
5	Only relevant for WELD application:
	Use of filler wire
	Check box active: Use filler wire.
	Check box not active: Do not use filler wire.
6	Only relevant for user-defined applications:
	Name for the user-defined data set (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	(>>> 7.3.14 "Option window – user-defined data set" Page 44)
	·
	(>>> 7.3.14 "Option window – user-defined data set" Page 44 If the Switch process instruction is preceded by a Switch gas is

If the Switch process instruction is preceded by a Switch gas instruction with the setting "Continuous", the robot controller ignores the parameters in the media set of the Switch process instruction ("Gas pressure" and "Gas preflow time").

(>>> 7.5.1 "Inline form "Switch gas"" Page 50)

7.3.3 Inline form "Deactivate process"

Call


Select the menu sequence Commands > LaserTech > Switching > Deactivate process.

Description This instruction switches off the laser power and terminates the laser program. The laser is not switched off.

If the gas has been activated earlier in the program with the **Switch gas** instruction and the setting "Continuous", the robot controller ignores the media data of the **Deactivate process** instruction ("Gas pressure" and "Gas postflow time").

The gas must be deactivated with the Switch gas instruction in such a case.

If there is no preceding **Switch gas** instruction with the setting "Continuous", the gas is deactivated by the **Deactivate process** instruction.

There must be no instructions triggering an advance run stop between the laser instruction and the motion instruction.



Fig. 7-7: Inline form "Deactivate process" (with Weld)

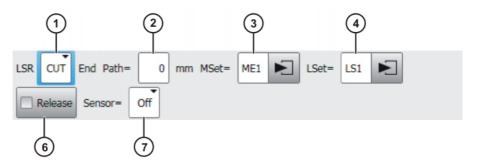
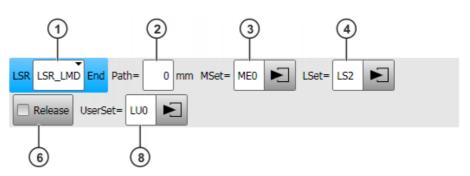



Fig. 7-8: Inline form "Deactivate process" (with Cut)

Item	Description
1	Selects an application.
	Empty box] : Only displayed if LaserWeld is not installed.
	 WELD: Laser welding (with wire feed)
	CUT: Laser cutting
	 USR_LSR, USR_TCH, USR_LMB: Up to 3 user-defined appli- cations possible (default entries)
2	Shifts the end point.
	-100 100 mm
3	Name for the media data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	For the applications [Empty box] and WELD:
	(>>> 7.3.8 "Option window "Media setting" – deactivating la- ser welding" Page 39)
	For the application CUT and user-defined applications:
	(>>> 7.7.6 "Option window "Media data" – deactivating laser cutting" Page 60)
4	Name for the laser data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	If the instruction is outside a spline block:
	(>>> 7.3.12 "Option window "Laser data" – Deactivate pro- cess (via time)" Page 42)
	If the instruction is within a spline block:
	(>>> 7.3.13 "Option window "Laser data" – Deactivate pro- cess (via distance)" Page 43)

Itom	Description
Item	Description
5	Only relevant for WELD application:
	Use of filler wire
	Check box active: Use filler wire.
	Check box not active: Do not use filler wire.
6	Check box active: The laser is enabled.
	Check box not active: Not enabled.
7	Only relevant for the CUT application:
	Distance sensor
	Off: Distance sensor OFF
	 Hold: The distance sensor remains in the current position.
	• PrPos : The distance sensor goes to the programmed position.
	This box can be displayed or hidden using the Add Cut and Rem Cut buttons.
8	Only relevant for user-defined applications:
	Name for the user-defined data set (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	(>>> 7.3.14 "Option window – user-defined data set" Page 44)

7.3.4 Inline form "Step seam"

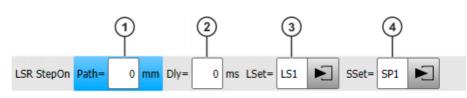
Call

Select the menu sequence Commands > LaserTech > Switching > Step seam.

Description This instruction performs a step seam. The instruction cannot be used with laser welding or laser cutting.

This instruction refers to the next motion instruction in the program. This motion instruction must be a CP motion. There must be no instructions triggering an advance run stop between the laser instruction and the motion instruction.

The step seam is canceled in the following cases:


- Activate process instruction
- Deactivate process instruction
- Exact positioning
- A smooth transition is made from a CP motion to a PTP motion.

Step seams are only possible without filler wire.

Step seams are velocity-dependent. If the velocity is modified, the seam must then be checked and optimized.

Fig. 7-10: Inline form "Step seam"

Item	Description
1	Shifts the activation point of the laser.
	-100 100 mm
2	Execution of the instruction is brought forward in time or delayed.
	■ -100 … 100 ms
3	Name for the laser data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	If the instruction is outside a spline block:
	(>>> 7.3.9 "Option window "Laser data" – Activate process/ Step seam (via time)" Page 40)
	If the instruction is within a spline block:
	(>>> 7.3.10 "Option window "Laser data" – Activate process/ Step seam (via distance)" Page 41)
4	Name for the step parameters (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	(>>> 7.3.15 "Option window "Step parameters"" Page 44)

7.3.5 Inline form "Laser test pulse"

Call

Select the menu sequence Commands > LaserTech > Switching > Laser test pulse.

Description

This instruction generates a laser pulse.

- The laser pulse can be measured to test the laser power. (Precondition: T1 mode.)
- The laser pulse can be executed several times to determine the focus of the optics. (Precondition: operating mode T1 or T2.)

NOTICE Not all monitoring functions are active with this instruction. Incorrect use can cause material damage. The instruction may only be used by trained personnel.

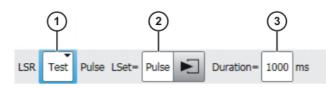


Fig. 7-11: Inline form "Laser test pulse"

Item	Description	
1	Select function.	
	Test: Test the laser power.	
	Focus : Determine the focus of the optics.	
2	Name for the laser data (name freely definable)	
	Touch the arrow to edit the data. The corresponding option win- dow is opened.	
	(>>> 7.3.16 "Option window "Laser data" – "Laser test pulse"" Page 45)	
3	Duration of laser pulse	
	■ 12 … 20,000 ms	

7.3.6 Option window "Media setting" – activating laser welding

Fig. 7-12: Option window "Media setting: gas" – activating laser welding, without wire

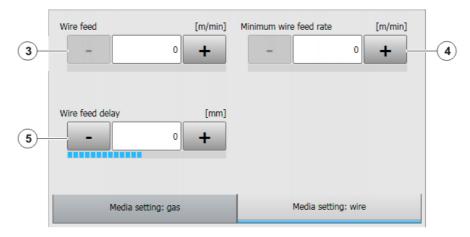


Fig. 7-13: Option window "Media setting: wire" – activating laser welding, with wire

Item	Description
1	Gas pressure
	■ 0 10 bar
	Note : This box is only displayed if the velocity-dependent laser power is activated (LSR_UsePwrVelCtrld = TRUE).
2	Gas preflow time
	• 0 25 s
3	Wirefeed
	• 0 25 m/min
4	Minimum wire feed rate
	• 0 15 m/min
5	Wirefeed delay
	■ -30 30 mm

7.3.7 Option window "Media setting" – switching laser welding

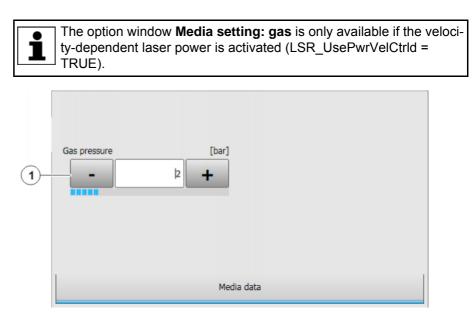


Fig. 7-14: Option window "Media setting: gas" – switching laser welding, without wire

The option window **Media setting: wire** is only available if filler wire is being used for laser welding (**Wire** check box in the inline form **Switch process** is activated).

2–	Wire feed	[m/min] 0 +	Minimum wire feed rate	[m/min] 0 +	-3
4-	Wire feed delay	[mm] • +			
	Media setting:	gas	Media setting: v	vire	

Fig. 7-15: Option window "Media setting: wire" – switching laser welding, with wire

Item	Description
1	Gas pressure
	■ 0 … 10 bar
2	Wirefeed
	• 0 25 m/min
3	Minimum wire feed rate
	• 0 15 m/min
4	Wirefeed delay
	■ -30 30 mm

7.3.8 Option window "Media setting" – deactivating laser welding

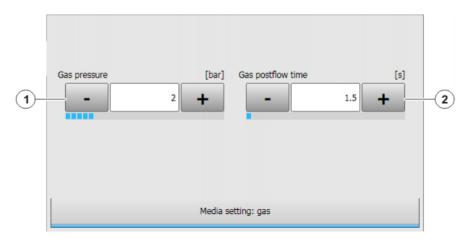


Fig. 7-16: Option window "Media setting: gas" – deactivating laser welding, without wire

The option window **Media setting: wire** is only available if filler wire is being used for laser welding (**Wire** check box in the inline form **Deactivate process** is activated).

3	Wire feed delay [mm]	
	Media setting: gas	Media setting: wire

Fig. 7-17: Option window "Media setting: wire" – deactivating laser welding, with wire

Item	Description
1	Gas pressure
	■ 0… 10 bar
	Note : This box is only displayed if the velocity-dependent laser power is activated (LSR_UsePwrVelCtrld = TRUE).
2	Gas postflow time
	■ 0 25 s
3	Wirefeed delay
	■ -30 30 mm

7.3.9 Option window "Laser data" – Activate process/Step seam (via time)

This option window is called via the inline forms **Activate process** and **Step seam**, if these are outside a spline block. In the case, the power ramp is defined via time.

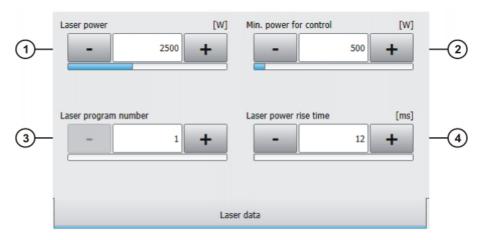
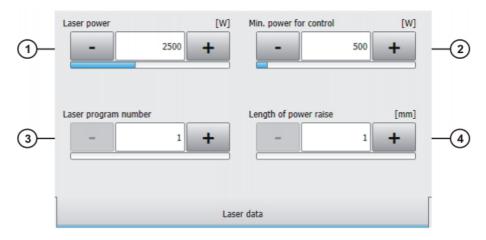
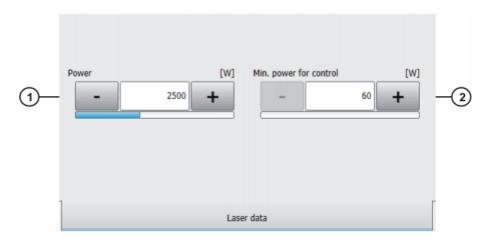



Fig. 7-18: Option window "Laser data" – Activate process (via time)

Item	Description	
1	Laser power at 100% velocity (maximum power)	
	■ 60 6,000 W	
2	Minimum power for velocity-dependent control of the laser power	
	■ 60 6,000 W	
	Note : This box is only displayed if the velocity-dependent laser power is activated (LSR_UsePwrVelCtrld = TRUE).	
3	Laser program number	
	1 200	
4	Laser power rise time	
	Time that elapses after activation before the laser reaches full power	
	■ 1 2,000 ms	
	The maximum laser power rise time can be modified in the regis- try.	
	(>>> 6.7 "Modifying maximum values for ramp times" Page 26)	

7.3.10 Option window "Laser data" – Activate process/Step seam (via distance)

This option window is called via the inline forms Activate process and Step seam, if these are within a spline block. In the case, the power ramp is defined via distance.



Item	Description	
1	Laser power at 100% velocity (maximum power)	
	■ 60 6,000 W	
2	Minimum power for velocity-dependent control of the laser power	
	■ 60 … 6,000 W	
	Note : This box is only displayed if the velocity-dependent laser power is activated (LSR_UsePwrVelCtrld = TRUE).	

Item	Description
3	Laser program number
	1 200
4	Length of power rise
	Distance traveled after activation before the laser reaches full power
	■ 1 2,000 mm

7.3.11 Option window "Laser data" – Switch process

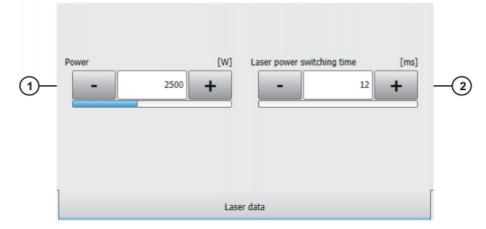


Fig. 7-20: Option window "Laser data" – Switch process

Item	Description	
1	Laser power at 100% velocity	
	■ 60 … 6,000 W	
2	Minimum power for velocity-dependent control of the laser power	
	■ 60 … 6,000 W	
	Note : This box is only displayed if the velocity-dependent laser power is activated (LSR_UsePwrVelCtrld = TRUE).	

7.3.12 Option window "Laser data" – Deactivate process (via time)

This option window is called via the inline form **Deactivate process**, if this is outside a spline block. In the case, the power ramp is defined via time.

Item	Description
1	Power limit during deactivation
	■ 60 … 6,000 W
2	Laser power drop time
	Time taken after deactivation for the laser to decrease its power
	■ 1 … 2,000 ms
	The maximum laser power drop time can be modified in the regis- try.
	(>>> 6.7 "Modifying maximum values for ramp times" Page 26)

7.3.13 Option window "Laser data" – Deactivate process (via distance)

This option window is called via the inline form **Deactivate process**, if this is within a spline block. In the case, the power ramp is defined via distance.

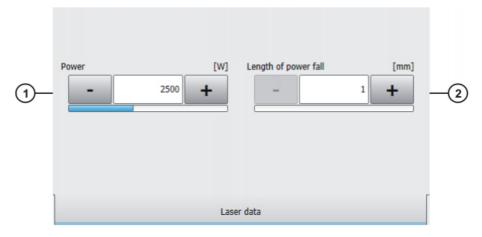


Fig. 7-22: Option window "Laser data" – Deactivate process (via distance)

Item	Description
1	Power limit during deactivation
	■ 60 6,000 W
2	Length of power fall
	Distance traveled after deactivation until the laser power is ramped down
	■ 1 2,000 mm

7.3.14 Option window – user-defined data set

Up to 12 user-defined parameters can be set in this option window.

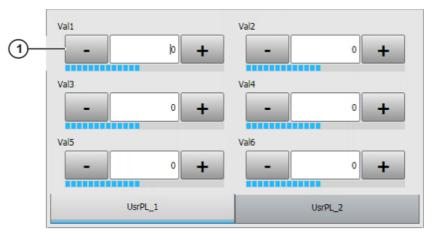
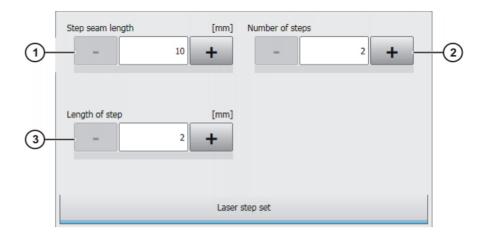



Fig. 7-23: Option window – user-defined data set

Item	Description
1	Parameter value which can be used for additional user-specific functions
	The name of the parameter and the unit are defined by the user.
	(>>> 9.1.2 "Changing parameter names and units in the option window" Page 68)

7.3.15 Option window "Step parameters"

Item	Description
1	Length of the step seam
	= 10 10,000 mm
2	Number of steps
	2 500
3	Length of a step
	■ 2 50 mm

7.3.16 Option window "Laser data" – "Laser test pulse"

Fig. 7-25: Option window "Laser data" - "Laser test pulse"

Item	Description
1	Laser power for the laser pulse
	■ 60 … 6,000 W
2	Laser program number
	1 200

7.4 Programming laser control

7.4.1 Inline form "Initialize laser"

Call

Select the menu sequence Commands > LaserTech > Control commands > Initialize laser.

Description This instruction initializes the laser. The first laser instruction in the KRL program must always be **Initialize laser**.

This instruction triggers an advance run stop.

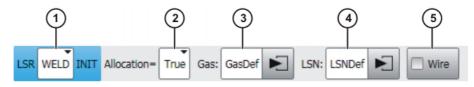


Fig. 7-26: Inline form "Initialize laser"

Item	Description
1	Selects an application.
	 [Empty box]: Only displayed if LaserWeld is not installed.
	 WELD: Laser welding (with wire feed)
	CUT: Laser cutting
	 USR_LSR, USR_TCH, USR_LMB: Up to 3 user-defined appli- cations possible (default entries)
2	Defines whether the laser is to be allocated to the robot during ini- tialization. Only relevant if the robot belongs to a laser network.
	True : Laser is allocated to the robot during initialization.
	False : Laser is not allocated to a robot during initialization.
3	Name for the defined gas types (name freely definable)
	Touch the arrow to select the gas type. The corresponding option window is opened.
	For the application WELD :
	(>>> 7.4.5 "Option window "Gas selection" – laser welding" Page 48)
	For the application CUT:
	(>>> 7.4.6 "Option window "Gas selection" – laser cutting" Page 49)
4	Name for the defined lasers (name freely definable)
	Touch the arrow to select the laser. The corresponding option win- dow is opened.
	(>>> 7.4.7 "Option window "Laser network" – "Initialize laser"" Page 49)
5	Only relevant for WELD application:
	Use of filler wire
	Check box active: Use filler wire.
	Check box not active: Do not use filler wire.
6	Only relevant for user-defined applications:
	Name for the user-defined data set (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	(>>> 7.3.14 "Option window – user-defined data set" Page 44)

7.4.2 Inline form "Enable laser"

Call Select the menu sequence Commands > LaserTech > Control commands > Enable laser.

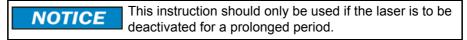
Description This instruction can be used to enable the laser for use by other robots at the end of a path. It is only relevant if the robot belongs to a laser network.

The instruction has the following effects:

- The gas supply is shut off.
- The laser is enabled.

LSR Free

Fig. 7-27: Inline form "Enable laser"


7.4.3 Inline form "Laser off"

Call

Select the menu sequence Commands > LaserTech > Control commands > Laser off.

Description

- This instruction has the following effects:
- The laser is deactivated.
- The gas supply is shut off.
- The laser is enabled.

LSR Off

Fig. 7-28: Inline form "Laser off"

7.4.4 Inline form "Laser request"

Call

Select the menu sequence Commands > LaserTech > Control commands > Laser request.

Description This instruction requests the laser via the signal LSRO_LsrRequest.

It is possible to program the robot controller to wait for the laser if the laser is allocated. To do so, use the instruction with **Allocate** (check box is activated).

The switching point for the instruction should be far enough before the next activation point to enable the robot to brake before the start of the seam to wait for allocation of the laser. Following allocation, the robot must be able to accelerate in order to reach the programmed velocity at the start of the seam. This is possible with the parameters **Path** and **Delay**.

This instruction refers to the next motion instruction in the program. This motion instruction must be a CP motion. There must be no instructions triggering an advance run stop be-

tween the laser instruction and the motion instruction.

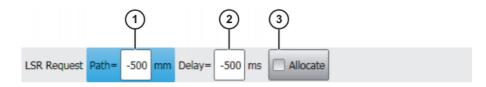
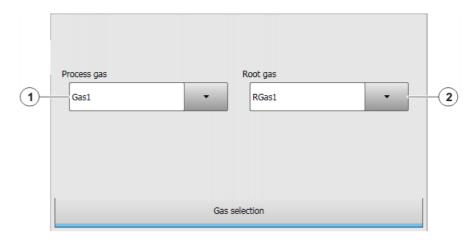



Fig. 7-29: Inline form "Laser request"

Item	Description
1	The point at which the instruction is executed is shifted forwards or backwards.
	■ -2,000 … 1,000 mm
2	Execution of the instruction is brought forward in time or delayed.
	■ -2,000 … 1,000 ms
3	Laser Allocate
	Check box active: The robot controller accesses the laser if it is not allocated. If the laser is allocated, the robot stops. The robot controller waits for the laser to be assigned to it.
	 Check box not active: If the laser is allocated, the robot con- troller does not wait until the laser is assigned to it.


Option window "Gas selection" – laser welding 7.4.5

Item	Description
1	Select process gas.
	The range of values depends on how many gas types have been configured.
	(>>> 6.4 "Configuring gas types for inline forms" Page 23)
2	Select root gas.
	The range of values depends on how many gas types have been configured.
	(>>> 6.4 "Configuring gas types for inline forms" Page 23)

7.4.6 Option window "Gas selection" – laser cutting

Item	Description
1	Select cutting gas.
	The range of values depends on how many gas types have been configured.
	(>>> 6.4 "Configuring gas types for inline forms" Page 23)

7.4.7 Option window "Laser network" – "Initialize laser"

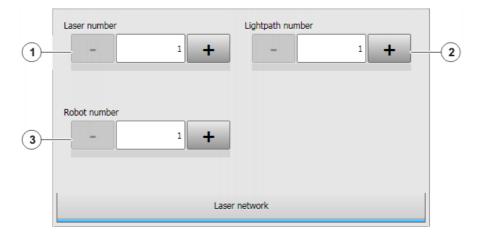


Fig. 7-32: Option window "Laser network" – "Initialize laser"

Item	Description
1	Select laser number.
	1 15
2	Select the fiber number.
	18
3	Select robot number.
	1 6

7.5 Programming media control

7.5.1 Inline form "Switch gas"

Call Select the menu sequence Commands > LaserTech > Media control > Switch gas.

Description This instruction switches the gas on or off.

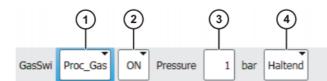
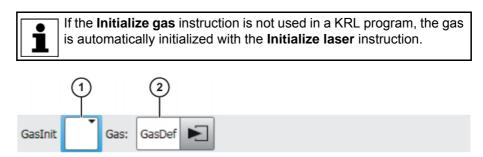


Fig. 7-33: Inline form "Switch gas"


Item	Description
1	Selects a gas.
	Proc_Gas: process gas
	Root_Gas: root gas
	Cut_Gas: cutting gas
	CrossJet
	All: all gases
	Note : It is not possible to activate all gases simultaneously. All can only be used to deactivate the gases simultaneously.
2	Switches the selected gas on or off.
	ON : Switches the gas on.
	• OFF : Switches the gas off.
	Note: The gas is only switched off if the laser is not active.
3	Gas pressure
	• 0 20 bar
	This box is only displayed if a proportional gas valve is used (LSR_PropGasValve = TRUE).
4	Only relevant for ON :
	 Continuous: The instruction applies until the next Switch gas instruction is programmed.
	Until then, the gas parameters (gas pressure, gas preflow time, gas postflow time) for the Activate process , Switch process and Deactivate process instructions are ignored.
	 Once: The gas parameters for the subsequent Activate pro- cess, Switch process and Deactivate process instructions in the program apply until a new gas is activated with the in- struction Switch gas.

7.5.2 Inline form "Initialize gas"

Call

Select the menu sequence Commands > LaserTech > Media control > Initialize gas.

Description This instruction is used to select the gases required for the process. The instruction must be used at least once in an application program. It must be placed before the **Initialize laser** instruction and before the first **Activate process** instruction. Within a program, the instruction is used to change the type of gas. If there is a process gas active when the instruction is executed, the process gas is deactivated. The **Switch gas** instruction is then required to activate the gas.

Fig. 7-34: Inline form "Initialize gas"

Item	Description
1	Selects an application.
	[Empty box]: Only displayed if LaserWeld is not installed.
	 WELD: Laser welding (with wire feed)
	CUT: Laser cutting
2	Name for the defined gas types (name freely definable)
	Touch the arrow to select the gas type. The corresponding option window is opened.
	For the application WELD :
	(>>> 7.4.5 "Option window "Gas selection" – laser welding" Page 48)
	For the application CUT :
	(>>> 7.4.6 "Option window "Gas selection" – laser cutting" Page 49)

7.5.3 Inline form "Cut wire"

Call

- Select the menu sequence Commands > LaserTech > Media control > Cut wire.
- **Description** To cut the welding wire to length reliably using a cutting device, the wire can be advanced a certain distance using this instruction. (Check box **Cut** is not active.)

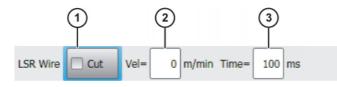


Fig. 7-35: Inline form "Cut wire" (without Cut)

This instruction is used to cut the wire with the laser. (Check box Cut is active.)

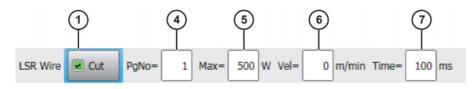


Fig. 7-36: Inline form "Cut wire" (with Cut)

Κυκα

Item	Description
1	Wire cutting with laser pulse
	• Check box active: Wire is cut with laser pulse.
	• Check box not active: Wire is not cut with laser pulse.
2	Velocity of the wire feed
	• 0 25 m/min
3	Duration of the wire feed
	■ 100 … 3,000 ms
4	Laser program number
	1 200
	This box is only displayed if the check box Cut is activated.
5	Laser power for cutting the wire
	■ 60 … 60,000 W
	This box is only displayed if the check box Cut is activated.
6	Wire feed rate
	• 0 25 m/min
7	Pulse duration for cutting the wire
	■ 100 … 3,000 ms

7.6 Programming sensor control

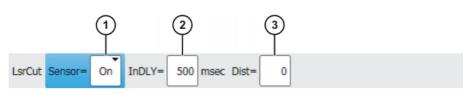
7.6.1 Inline form "Switch sensor"

Call Select the menu sequence Commands > LaserTech > Sensor control > Switch sensor.

Description This command is used to define the settings for the distance sensor.

The cutting distance defined here can be transferred as an analog value or via a program number. This is set using the variable LSC_AnaCutDistance.

- TRUE = cutting distance is transferred as an analog value.
- FALSE = cutting distance is transferred via a program number (default).


Procedure for InDLY > 0:

- 1. Tip compensation time 2 is taken into consideration.
- 2. Motion stop
- 3. The robot moves to the point specified by the value defined in LSC_SecDistance.
- 4. The wait time defined in InDLY expires.
- 5. The cutting gas is switched. The distance defined in the inline form is set.
- 6. The wait time defined in LSC_SecInDly expires.
- 7. The motion is resumed.

This instruction is also used to modify an existing cutting distance. In this case, LsrCutSensor = On, InDLY = 0 and the new distance are programmed.

i

Detailed information about the distance sensor and distance controller is contained in the PRECITEC documentation.

Fig. 7-37: Inline form "Switch sensor" (analog distance)

Fig. 7-38: Inline form "Switch sensor" (program-controlled distance)

Item	Description
1	Distance sensor
	On: Distance sensor ON
	Off: Distance sensor OFF
	Hold : The distance sensor remains in the current position.
	• PrPos : The distance sensor goes to the programmed position.
2	Piercing position after the end point of the motion.
	• 0 4,000 ms
3	Cutting distance; unit: 1/10 mm
	■ 1 300
	This box is only displayed if the cutting distance is transferred as an analog value (LSC_AnaCutDistance = TRUE).
4	Number of the program in the sensor controller that regulates the cutting distance
	■ 13
	This box is only displayed if the cutting distance is transferred via a program number (LSC_AnaCutDistance = TRUE).

7.6.2 Inline form "Sensor settings"

Call

Select the menu sequence Commands > LaserTech > Sensor control > Sensor settings.

Description This instruction can be used to set the cutting and piercing data for laser cutting and call a piercing function. This piercing function implicitly switches the distance sensor on.

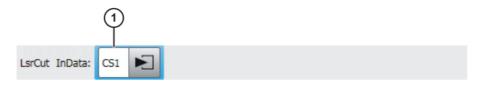


Fig. 7-39: Inline form "Sensor settings"

Item	Description
1	Name for the piercing and cutting data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	(>>> 7.7.8 "Option window "Sensor parameters" and "Process parameters"" Page 61)

7.7 Programming laser cutting

- 7.7.1 Inline form "Rectangle", "Slot", "Hexagon", "Circle"
- Call
- Select the menu sequence Commands > LaserTech > Cutting.

The following menu items are available:

- Rectangle
- Slot
- Hexagon
- Circle

Description This command defines which pattern will be cut. Optionally, the cutting and piercing data for laser cutting can be defined.

If the piercing and cutting data are defined, the instruction calls a piercing function that implicitly activates the distance sensor. In this case, the instruction replaces the instruction **Switch sensor**.

(>>> 7.6.1 "Inline form "Switch sensor"" Page 52)

Every cutting pattern is executed as a spline motion.

NOTICE These instructions execute a calculated motion based on the parameters set in the option window. Incorrectly set parameters can result in damage to the system. Always carry out a test tun after creating or modifying these instructions.

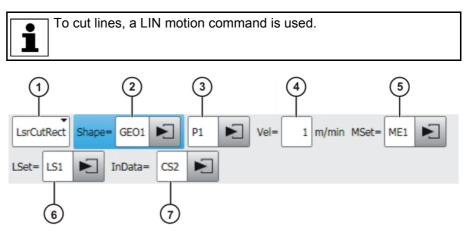
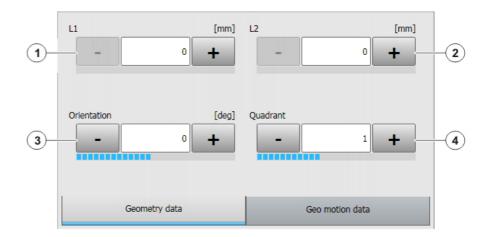


Fig. 7-40: Inline form "Rectangle"

Item	Description
1	Selects a pattern.
	LsrCutRect: Rectangle
	LsrCutSlot: Slot
	LsrCutHex: Hexagon
	LsrCutCircle: Circle
2	Name for the geometry data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	(>>> 7.7.2 "Option windows "Geometry data" and "Geo motion data"" Page 55)
3	Name of the end point (name freely definable)
	Touch the arrow to edit the point data. The corresponding option window is opened.
	(>>> 7.7.3 "Option window: Frames" Page 58)
4	Velocity
	• 0.01 10 m/min
5	Name for the media data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	(>>> 7.7.4 "Option window "Media data" – activating laser cut- ting" Page 59)
6	Name for the laser data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	(>>> 7.7.7 "Option window "Laser data" – Rectangle, Slot, Hexa- gon, Circle" Page 60)
7	Name for the piercing and cutting data (name freely definable)
	Touch the arrow to edit the data. The corresponding option win- dow is opened.
	(>>> 7.7.8 "Option window "Sensor parameters" and "Process parameters" Page 61)
	This box can be displayed or hidden using the Add Cut and Rem Cut buttons.


7.7.2 Option windows "Geometry data" and "Geo motion data"

Description

This option window is called from the following inline forms:

- Rectangle
- Slot
- Hexagon
- Circle

The meaning of the boxes depends on the pattern selected in the inline form.

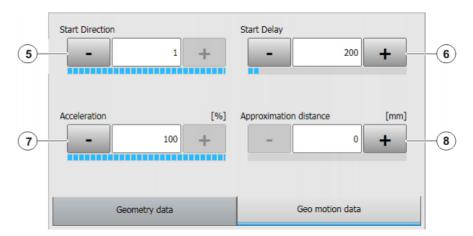


Fig. 7-42: Option window "Geo motion data"

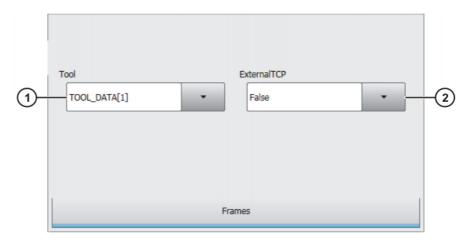
Rectangle

Item	Description
1	Side length of 1st cut
	 Positive values
2	Side length of 2nd cut
	 Positive values
3	Orientation angle of the rectangle in the XY plane relative to the current base system
	■ 0° 360°
4	Area within the rectangle where initial piercing takes place
	1 4
5	Initial cutting direction
	-1: to the left
	1: to the right
6	Interval between laser switch-on and start of robot motion
	■ 0 3000 ms
7	Acceleration
	Refers to the maximum value specified in the machine data. The maximum value depends on the robot type and the selected oper- ating mode.
8	Approximation distance

Slot

Item	Description
1	Length of the long side
	The value must be greater than the length of the short side.
2	Length of the short side
	The value must be less than the length of the long side.
3	Orientation angle of the slot in the XY plane relative to the current base system
	• 0° 360°
4	Area within the slot where initial piercing takes place
	1 4
5	
6	Interval between laser switch-on and start of robot motion
	■ 0 3000 ms
7	Acceleration
	Refers to the maximum value specified in the machine data. The maximum value depends on the robot type and the selected oper- ating mode.
8	Approximation distance

Hexagon


Item	Description
1	Side length of hexagon
	 Positive values
2	
3	Orientation angle of the hexagon in the XY plane relative to the current base system
	• 0° 360°
4	Area within the hexagon where initial piercing takes place
	1 4
5	Initial cutting direction
	 -1: to the left
	1: to the right
6	Interval between laser switch-on and start of robot motion
	• 0 3000 ms
7	Acceleration
	Refers to the maximum value specified in the machine data. The maximum value depends on the robot type and the selected oper- ating mode.
8	Approximation distance
Item	Description

Circle

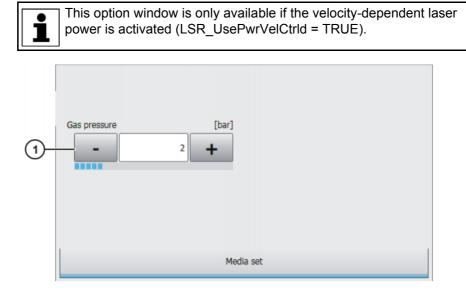
Item	Description
1	Diameter of the circle
	 Positive values
2	Angle, if only an arc is being cut
	 Positive values
3	
4	Area within the circle where initial piercing takes place
	1 4

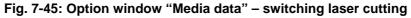
Item	Description
5	Initial cutting direction
	 -1: to the left
	If an arc is cut, "-1" must be entered.
	1: to the right
6	Interval between laser switch-on and start of robot motion
	• 0 3000 ms
7	Acceleration
	Refers to the maximum value specified in the machine data. The maximum value depends on the robot type and the selected oper- ating mode.
8	Approximation distance

7.7.3 **Option window: Frames**

Item	Description
1	Tool selection.
	[1] [16]
	If True in the box ExternalTCP: workpiece selection.
2	Interpolation mode
	False : The tool is mounted on the mounting flange.
	True : The tool is a fixed tool.

7.7.4 Option window "Media data" – activating laser cutting



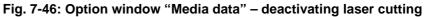


Item	Description
1	Gas pressure
	■ 0 … 10 bar
	Note : This box is only displayed if the velocity-dependent laser power is activated (LSR_UsePwrVelCtrld = TRUE).
2	Gas preflow time
	• 0 25 s

If the gas preflow time overlaps with the gas postflow time of the previous motion, the gas continues to flow without interruption.

7.7.5 Option window "Media data" – switching laser cutting

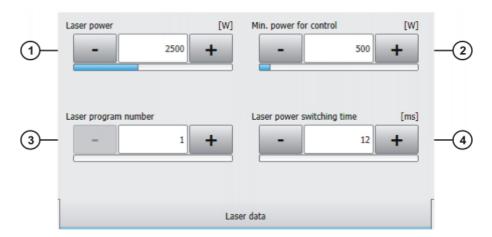


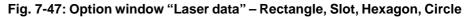


I	Item	Description
	1	Gas pressure
		• 0 10 bar

Κυκα

7.7.6 Option window "Media data" – deactivating laser cutting



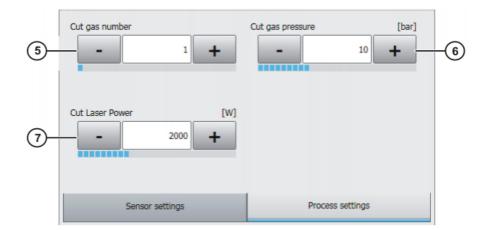


Item	Description
1	Gas pressure
	■ 0… 10 bar
	Note : This box is only displayed if the velocity-dependent laser power is activated (LSR_UsePwrVelCtrld = TRUE).
2	Gas postflow time
	■ 025 s

If the gas preflow time overlaps with the gas postflow time of the previous motion, the gas continues to flow without interruption.

7.7.7 Option window "Laser data" – Rectangle, Slot, Hexagon, Circle

Item	Description
1	Laser power at 100% velocity
	■ 60 6,000 W
2	Minimum power for velocity-dependent control of the laser power
	■ 60 6,000 W
	Note : This box is only displayed if the velocity-dependent laser power is activated (LSR_UsePwrVelCtrld = TRUE).


Item	Description		
3	Laser program number		
	1 200		
4	Laser power rise time		
	Time that elapses after activation before the laser reaches full power		
	■ 1 2,000 ms		
	The maximum laser power rise time can be modified in the regis- try.		
	(>>> 6.7 "Modifying maximum values for ramp times" Page 26)		

7.7.8 Option window "Sensor parameters" and "Process parameters"

Fig. 7-48: Option window: Sensor parameters

Item	Description	
1	Piercing distance (TCP of the sensor – component); unit: 1/10 mm	
	0 300	
2	Cutting distance; unit: 1/10 mm	
	0 300	
3	Piercing time	
	■ 0… 3,000 ms	
4	Wait time after changing the cutting gas	
	■ 0 3,000 ms	

Item	Description	
5	Cutting gas number	
	0 30	
6	Cutting gas pressure during cutting	
	■ 0 30 bar	
7	Laser power during cutting	
	■ 60 6,000 W	

8 Example programs

8.1 Example program: step seam

The velocity of the laser must be kept constant until the switching point is reached. Otherwise it is possible that the laser may switch before or after the planned switching point.

Program

1	DEF step()
2	INI
3	PTP HOME Vel= 100 % DEFAULT
4	PTP Start CONT Vel=100 % PDAT0 Tool[1] Base[0]
5	LSR WELD Allocation=True Gas: GasDef LSN: LSNDef
6	LIN P1 CONT Vel=0.2 m/s CPDAT1 Tool[1] Base[0]
7	GasSwi Proc_Gas ON
8	GasSwi CrossJet ON Haltend
9	LIN P2 CONT Vel=0.2 m/s CPDAT2 Tool[1] Base[0]
10	LSR StepOn Path=0 mm Dly=0 ms LSet=LS22 SSet=SP3
11	LIN P3 CONT Vel=0.1 m/s CPDAT3 Tool[1] Base[0]
12	LIN P4 CONT Vel=0.1 m/s CPDAT4 Tool[1] Base[0]
13	LSR WELD End Path=0 mm Min=100 W MSet=ME10 LSet=LS11 Release
14	LIN P5 CONT Vel=0.1 m/s CPDAT5 Tool[1] Base[0]
15	GasSwi All OFF
16	PTP HOME Vel= 100 % DEFAULT
17	END

Description

Line	Description		
5	Initializes the laser. The instruction carries out an implicit request. Light path and laser are selected.		
	This instruction does not perform a reset.		
	The robot motion is generally stopped due to handshake operations with the laser.		
7	The process gas is switched on.		
8	CrossJet is activated.		
	Continuous : until GasSwi All OFF, the gas parameters (pressure, gas preflow time, gas postflow time) for all Lase-rOn, LaserSwi and LaserEnd instructions are ignored.		
10	The next motion instruction executes a step seam.		
	The overall length of the step seam and the number and length of the steps are defined in the option window Step parameters .		
13	The laser power is switched off and the laser program termi- nated at the end point of the motion block LIN P5. The laser itself is not switched off.		
15	All gases are deactivated.		

Example program: gas and laser welding functions 8.2

Program

1	DEF Gas()
2	INI
3	PTP HOME Vel=100 % DEFAULT
4	PTP Start CONT Vel=100 % PDAT0 Tool[1] Base[0]
5	GasInit Gas: GasDef
6	LIN PO CONT Vel=0.2 m/s CPDAT6 Tool[1] Base[0]
7	LSR INIT Allocation=True Gas: GasDef LSN: LSNDef
8	LIN P1 CONT Vel=0.2 m/s CPDAT1 Tool[1] Base[0]
9	GasSwi Proc_Gas ON Pressure 4 bar Nicht Haltend
10	GasSwi CrossJet ON Nicht Haltend
11	GasSwi Root_Gas ON Nicht Haltend
12	LIN P2 CONT Vel=0.1 m/s CPDAT2 Tool[1] Base[0]
13	LSR On Path=0 mm MSet=ME3 LSet=LS3
14	LIN P3 CONT Vel=0.1 m/s CPDAT3 Tool[1] Base[0]
15	LSR Switch Path=0 mm MSet=ME4 LSet=LS4
16	LIN P4 CONT Vel=0.1 m/s CPDAT4 Tool[1] Base[0]
17	LSR End Path=0 mm MSet=ME2 LSet=LS2 Release
18	LIN P5 CONT Vel=0.1 m/s CPDAT5 Tool[1] Base[0]
19	PTP HOME Vel= 100 % DEFAULT
20	END

Description

Line	Description		
5	Initializes the gases. This instruction is used to initialize the process and root gases.		
	If gases are switched on/off with the GasSwi instruction, they must be initialized before the laser is initialized.		
7	Initializes the laser. The instruction carries out an implicit request. Light path and laser are selected.		
	This instruction does not perform a reset.		
	The robot motion is generally stopped due to handshake operations with the laser.		
9	The process gas is switched on.		
10	CrossJet is activated.		
11	The root gas is switched on.		
13	The instruction refers to the next motion instruction: the laser program is started at the end point of the motion block LIN P3.		
	If the laser has not yet been requested, it is now requested implicitly by means of this instruction. This causes the motion to stop.		
15	Modification of the weld parameters. The instruction refers to the next motion instruction.		
17	The laser power is switched off and the laser program termi- nated at the end point of the motion block LIN P5. The laser itself is not switched off.		
	The instruction switches the gas off, as a GasSwi ON instruc- tion has been programmed with the setting "Once". It is not necessary to deactivate the gas with GasSwi OFF.		
	The laser power is ramped down if a ramp time has been pro- grammed.		

Κυκα

8.3 Example program: set piercing and cutting data

Program

1	DEF SetCut()				
2	INI				
3	PTP HOME Vel=100 % DEFAULT				
4	PTP Start CONT Vel=100 % PDAT0 Tool[1] Base[0]				
5	LSR CUT Allocation=True Gas: GasDef LSN: LSNDef				
6	PTP P1 CONT Vel=10 % PDAT1 Tool[2] Base[0]				
7	LIN P2 CONT Vel=0.2 m/s CPDAT1 Tool[1] Base[0]				
8	LsrCut InData: CS1				
9	LsrCut Sensor=On InDLY=500 msec PgNo=1				
10	LIN P3 CONT Vel=0.1 m/s CPDAT4 Tool[1] Base[0]				
11	LIN P4 CONT Vel=0.1 m/s CPDAT5 Tool[1] Base[0]				
12	LIN P5 CONT Vel=0.1 m/s CPDAT6 Tool[1] Base[0]				
13	LsrCut Sensor=Hold InDLY=500 msec PgNo=1				
14	LIN P6 CONT Vel=0.1 m/s CPDAT7 Tool[1] Base[0]				
15	PTP HOME Vel= 100 % DEFAULT				
16	END				

Description

Line	Description
5	Initializes the laser. The instruction carries out an implicit request. Light path and laser are selected.
	This instruction does not perform a reset.
	The robot motion is generally stopped due to handshake operations with the laser.
8	The piercing and cutting data are set.
9	The distance sensor is switched on.
	If InDLY > 0, piercing is carried out from a standstill.
13	The distance sensor remains in the current position.

8.4 Example program: piercing function

When the piercing function is called, the following piercing operation is executed:

- 1. The piercing data are set before the laser is switched on.
- 2. The robot waits at the start point of the cut (exact positioning).
- 3. The sensor is moved to the piercing distance.
- 4. Once the sensor has reached the piercing distance (LSCI_SnsrPosReached = TRUE), it remains in this position.
- 5. After a wait time (=piercing time), the sensor is set to the cutting distance.
- 6. The laser power is reduced to approx. 1% of the maximum power.
- 7. The cutting gas is changed.
- 8. The robot starts the laser cutting.

Program

T	DEF Shape_einstechen()
2	INI
3	PTP HOME Vel=100 % DEFAULT
4	PTP Start CONT Vel=100 % PDATO Tool[1] Base[0]
5	LSR CUT Allocation=True Gas: GasDef LSN: LSNDef
6	LIN P6 CONT Vel=0.2 m/s CPDAT1 Tool[1] Base[0]
7	GasSwi Cut_Gas ON Nicht Haltend
8	GasSwi CrossJet ON Nicht Haltend
9	LIN P7 CONT Vel=0.2 m/s CPDAT2 Tool[1] Base[0]
10	LsrCutHex Shape=GP1 P12 Vel=1 m/min MSet=ME20 LSet=LS22
	InData=CS1
11	LIN P8 CONT Vel=0.1 m/s CPDAT3 Tool[1] Base[0]
12	LSR Free
13	PTP HOME Vel= 100 % DEFAULT
14	END

Description

Line	Description		
5 Initializes the laser. The instruction carries out an im request. Light path and laser are selected.			
	This instruction does not perform a reset.		
	The robot motion is generally stopped due to handshake operations with the laser.		
7	The cutting gas is switched on.		
8	CrossJet is activated.		
10	The piercing and cutting data are set. The piercing function is called and the distance sensor is switched on.		
12	The laser is enabled.		

Programming for system integrators 9

9.1 Configuring user-defined applications

Description	LaserTech can be expanded for up to 3 user-defined applications. These applications can then be selected, in the same way as WELD and CUT, as list entries in the inline forms for initializing and switching the laser.			
	In addition, a user-defined data set with up to 12 parameters can be created for each of these applications. This data set can then be selected in the inline forms for switching the laser and edited in an option window.			
Precondition	•	"Expert" user group		
Procedure	1.	In the main menu, select Display > Variable > Single .		
		The Variable display – Single window is opened.		
		Set the variable LSR_USR_TECH to TRUE. The use of user-defined applications is enabled.		
		Assign one or more variables the values specified here in order to gener- ate the desired list entries in the inline forms:		
		 Assign TP_USR_ID the value #USR_LSR. Generates the list entry USR_LSR. 		
		 Assign TP_TCH_ID the value #USR_TCH. Generates the list entry USR_TCH. 		
		 Assign TP_LMB_ID the value #USR_LMB. Generates the list entry USR_LMB. 		
		Set the variable LSR_USR_PL to TRUE. The option window with the user- defined data set can be displayed and edited.		
	5.	To initialize the changes, reboot the robot controller with a cold restart.		
9.1.1 Changing li	ist e	ntries in the inline forms		
Description		e default list entries generated in the inline forms can be changed so that a match the user-defined application.		
Precondition	•	"Expert" user group		
		To edit the file on the robot controller: Windows interface (smartHMI is minimized)		
Procedure	1.	Open the file C:\KRC\DATA\TPLASER_USR.KXR.		
	2.	Search for the key of the desired list entry, e.g. LSR_LMD.		
		In the line <text xml:lang="de-DEV">, enter the German text to be dis- played in the list entry.</text>		
		In the line <text xml:lang="en-DEV">, enter the English text to be dis- played in the list entry.</text>		
	5.	Save the file.		
		Reboot the robot controller with a cold restart (with the option Reload files).		

Example	 <uitext key="LSR_LMD"> <text xml:lang="de-DEV">Test 1</text> <text xml:lang="en-DEV">test 1</text> </uitext> <uitext key="LSR_TCH"> <text xml:lang="de-DEV">Test 2</text> <text xml:lang="de-DEV">Test 2</text> </uitext> <uitext key="LSR_USR"> <text xml:lang="de-DEV">Test 3</text> <text xml:lang="de-DEV">test 3</text> <text xml:lang="en-DEV">test 3</text> <text xml:lang="en-DEV">test 3</text> <text xml:lang="en-DEV">test 3</text> </uitext>					
9.1.2 Changing	parameter names and units in the option window					
Description	The default parameter names and units generated in the option window can be changed so that they match the user-defined application.					
Precondition	 "Expert" user groupWindows interface (smartHMI is minimized).					
Procedure	 Open the file C:\KRC\DATA\TPLASER_USR.KXR. Search for the key of the desired parameter, e.g. Val1 for the parameter name or Val1_U for the unit of the parameter. In the line <text xml:lang="de-DEV">, enter the German text or unit to be displayed in the list entry.</text> In the line <text xml:lang="en-DEV">, enter the English text or unit to be displayed in the list entry.</text> Save the file. Reboot the robot controller with a cold restart (with the option Reload files). 					
Example	<uitext key="Val1"> <text xml:lang="de-DEV">Wert 1</text> <text xml:lang="en-DEV">Value 1</text>> </uitext> <uitext key="Val1_U"> <text xml:lang="de-DEV">mm</text> <text xml:lang="en-DEV">mm</text> </uitext>					

9.2 Integration of user-defined functions

Overview Within the LaserTech standard package, functions of different interfaces are called. In each case, this involves the transfer of a command as ENUM, an integer parameter and a function argument.

Interface	Call
LSR_Tech_IFC	LSR_Tech_IFC(#CMD, x, y)
(>>> 9.3.1 "Interface to the laser process LSR_Tech_IFC" Page 70)	Call defined in Lsr_Tech_IC.src
LSR_Lsr_IFC	LSR_Lsr_IFC(#CMD, x, y)
(>>> 9.3.2 "Interface to the laser control LSR_Tech_IFC" Page 72)	Call defined in LSR_Lsr_IC.src

Interface	Call
LSR_Media_IFC	LSR_Media_IFC(#CMD, x, y)
(>>> 9.3.3 "Interface to media LSR_Media_IFC" Page 72)	Call defined in Lsr_Media_IC.src
LSR_Err_IFC	LSR_Err_IFC(#CMD, x, y)
(>>> 9.3.4 "Interface to error handling LSR_ERR_IFC" Page 73)	Call defined in Lsr_Err_Ic.src

Example

By way of example, the interface function call is described here for the interface to the laser process LSR_Tech_IFC.

If only LaserTech is used, the file Lsr_Tech_IC.src has the following structure:

```
1
  DEF Lsr Tech IC()
2 END
3 Global DEF LSR Tech IFC (Action : In, CallID : IN, Arg : IN)
4
    ;***
5
    ;* Interface to the different laser technologies *
6
     ;*
    ;* Date: 02.2013
7
8
    ;*
    9
10
    DECL Tech Interface Action
   DECL INT CallID
11
12 DECL INT Arg
13 ; Fold Tech Interfaces
14 ;ENDFOLD (TechInterfaces)
15 END ; (LSR TECH IFC)
```

Line	Description
3	Declaration of the global subprogram LSR_Tech_IFC
	Interface to the laser process
10	Action currently being executed
11	If there are a number of tasks for one action, these are distin- guished by the CalIID.
12	Open parameter for user-defined expansion

If the LaserWeld or LaserCut option is used in addition, a fold is inserted during installation in which the TechHandle of the respective option is polled. If the TechHandle is then set in a higher-level function, the specific function for LaserWeld or LaserCut is called and executed.

```
1 DEF Lsr_Tech_IC()
2 END
...
13 ;Fold Tech Interfaces
14 ;Fold Weld Interfaces
15 IF TechHandle == TP_Weld_ID THEN
16 LSW_TECH_IFC(Action, CallID, Arg)
17 ENDIF
18 ;ENDFOLD (WeldInterfaces)
19 ;ENDFOLD (TechInterfaces)
20 END ; (LSR_TECH_IFC)
```

Line	Description
15 17	Polling the TechHandle of the LaserWeld option

To expand LaserTech with user-specific functions, a corresponding TechHandle must be programmed.

- 1	
T	DEF Lsr_Tech_IC()
2	END
13	;Fold Tech Interfaces
14	;Fold Weld Interfaces
15	IF TechHandle == TP Weld ID THEN
16	LSW TECH IFC(Action, CallID, Arg)
17	ENDIF
18	IF TechHandle == #LSR_LMD THEN
19	LSW_LMD_IFC(Action, CallID, Arg)
20	ENDIF
21	;ENDFOLD (WeldInterfaces)
22	;ENDFOLD (TechInterfaces)
23	END ; (LSR_TECH_IFC)

Line	Description
18 20	Polling the TechHandle of an additional user-specific function
19	Within the subprogram LSW_LMD_IFC, which must be cre- ated separately, the user-specific function calls are pro- grammed.
	The name of the subprogram is freely selectable.

9.3 Interfaces for functional expansions

Interface to the laser process LSR_Tech_IFC 9.3.1

Action	CallID	Arg	Call	Description
Tech_ON	0	0	lsr_err_handler.src	Call if the restart option Hot
			LSR_RESTART_LASE R;262	is selected as the response in the dialog dis- played after an error.
	1	0	lsr_MainFunc.src	At the start of the proce-
			LSR_ON;613	dure
	2	0	Isr_MainFunc.src	Before setting the sync
			LSR_ON;634	input (e.g. LSRI_LsrSet3)
	3	0	Isr_MainFunc.src	After setting Start static
			LSR_ON;637	
	4	0	Isr_MainFunc.src	Activation not permitted,
			LSR_ON;640	before ramping down the laser
	5	0	lsr_MainFunc.src	Activation not permitted,
			LSR_ON;649	after enabling of the laser
	6	0	Isr_MainFunc.src	At the end of LaserOn
			LSR_ON;654	
Tech_Pre_ON	0	0	lsr_MainFunc.src	At the start of the function
			LSR_PRE_ON;526	
	1	0	lsr_MainFunc.src	At the end of the function
			LSR_PRE_ON;541	

Tech_Swi 1 0 Isr_MainFunc.src At the start of the function LSR_Swi:688 2 0 Isr_MainFunc.src After power change 2 0 Isr_MainFunc.src After executing the switch action 3 0 Isr_MainFunc.src After executing the switch action 3 0 Isr_MainFunc.src At the end of the function LSR_Swi;733 3 1 0 Isr_MainFunc.src Tech_Pre_Swi 1 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;554 2 0 Isr_MainFunc.src At the end of the function LSR_Off;746 1 0 Isr_MainFunc.src At the end of the function LSR_Off;762 3 0 Isr_MainFunc.src At the end of the function LSR_Off;770 Tech_Pre_Off 1 0 Isr_MainFunc.src At the end of the function LSR_Off;770 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;588 Isr_MainFunc.src TECH_Pre_Off 1 0 Isr_MainFunc.src At the end of the function LSR_Intr_LASER;199 Isr_MainFunc.src<	Action	CallID	Arg	Call	Description
2 0 Isr_MainFunc.src LSR_Swi;702 After power change 3 0 Isr_MainFunc.src LSR_Swi;703 After executing the switch action 4 0 Isr_MainFunc.src LSR_Swi;733 After executing the switch action Tech_Pre_Swi 1 0 Isr_MainFunc.src LSR_Pre_Swi;576 At the end of the function Tech_Off 1 0 Isr_MainFunc.src LSR_Pre_Swi;576 At the end of the function Tech_Off 1 0 Isr_MainFunc.src LSR_Off;746 At the start of the function 2 0 Isr_MainFunc.src LSR_Off;770 At the start of the function Tech_Pre_Off 1 0 Isr_MainFunc.src LSR_Off;770 At the end of the function Tech_Pre_Off 1 0 Isr_MainFunc.src LSR_Pre_Swi;588 At the end of the function TECH_RELDEVICE 0 0 Isr_MainFunc.src LSR_NIT_LASER; 191 At the end of the function TECH_INIT 0 0 Isr_MainFunc.src At the end of the function TECH_RELDEVICE 0 0 Isr_MainFunc.src If Lsr_alloc = True, after enabling of the laser <td< td=""><td>Tech_Swi</td><td>1</td><td>0</td><td>lsr_MainFunc.src</td><td>At the start of the function</td></td<>	Tech_Swi	1	0	lsr_MainFunc.src	At the start of the function
Image: LSR_Swi;702 After executing the switch action 3 0 Isr_MainFunc.src After executing the switch action 4 0 Isr_MainFunc.src At the end of the function LSR_Swi;733 Isr_MainFunc.src At the start of the function LSR_Pre_Swi;554 Isr_MainFunc.src At the start of the function LSR_Pre_Swi;576 Isr_MainFunc.src At the start of the function Tech_Off 1 0 Isr_MainFunc.src At the start of the function LSR_Off;766 Isr_MainFunc.src At the end of the function LSR_Off;762 Tech_Pre_Off 1 0 Isr_MainFunc.src At the end of the function LSR_Off;770 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;588 2 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;588 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;588 Isr_MainFunc.src Isr_MainFunc.src TECH_RELDEVICE 0 Isr_MainFunc.src Isr_MainFunc.src LSR_Pre_Swi;588 Isr_MainFunc.src Isr_Laster, 191<				LSR_Swi;668	
3 0 Isr_MainFunc.src LSR_Swi;731 After executing the switch action 4 0 Isr_MainFunc.src LSR_Swi;733 At the end of the function Tech_Pre_Swi 1 0 Isr_MainFunc.src At the start of the function Isr_MainFunc.src At the start of the function LSR_Pre_Swi;554 At the end of the function Tech_Off 1 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;576 1 0 Isr_MainFunc.src At the start of the function LSR_Off;762 1 0 Isr_MainFunc.src As preparation for the next section with laser power 3 0 Isr_MainFunc.src At the end of the function LSR_Off;770 Tech_Pre_Off 1 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;588 2 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;588 1 1 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;588 1 1 0 Isr_MainFunc.src At the end of the function		2	0	Isr_MainFunc.src	After power change
LSR_Swi;731 action 4 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;733 1 0 Isr_MainFunc.src At the start of the function LSR_Pre_Swi;54 2 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;576 2 0 Isr_MainFunc.src At the end of the function Tech_Off 1 0 Isr_MainFunc.src At the start of the function LSR_Off;766 2 0 Isr_MainFunc.src As preparation for the next section with laser power As preparation for the next Section with laser power As preparation for the next section with laser power Tech_Pre_Off 1 0 Isr_MainFunc.src At the start of the function LSR_Pre_Swi;588 2 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;588 2 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;588 1 0 Isr_MainFunc.src If Lsr_alloc = True, after rebulk 0 0 Isr_MainFunc.src If Lsr_alloc =				LSR_Swi;702	
40Isr_MainFunc.src LSR_Swi;733At the end of the function LSR_Swi;733Tech_Pre_Swi10Isr_MainFunc.src LSR_Pre_Swi;554At the start of the function LSR_Pre_Swi;576Tech_Off10Isr_MainFunc.src LSR_Off;746At the start of the function LSR_Off;746Tech_Off10Isr_MainFunc.src LSR_Off;762At the start of the function LSR_Off;762Tech_Off10Isr_MainFunc.src LSR_Off;762At the start of the function LSR_Off;762Tech_Pre_Off10Isr_MainFunc.src LSR_Off;770At the end of the function LSR_Off;770Tech_Pre_Off10Isr_MainFunc.src LSR_Off;768At the start of the function LSR_Pre_Swi;588TECH_RELDEVICE0Isr_MainFunc.src LSR_Pre_Swi;598At the end of the function LSR_Pre_Swi;598TECH_INIT0Isr_MainFunc.src LSR_INIT_LASER; 191If Lsr_alloc = True, after enabling of the laserTECH_INIT0Isr_MainFunc.src LSR_INIT_LASER; 196If Lsr_alloc = False, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.src LSR_INIT_LASER; 199At the end of the function LSR_INIT_LASER; 199TECH_RELDEVICE00Isr_MainFunc.src LSR_INIT_LASER; 199After complete initialization LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.src LSR_AinFunc.src LSR_INIT_LASER; 199After deactivation, before Standby is removed Standby is removed Standby is removed Standby is removed Standby is removed Standby is removed Standby is		3	0	lsr_MainFunc.src	
Tech_Pre_Swi10Isr_MainFunc.src LSR_Pre_Swi;554At the start of the function LSR_Pre_Swi;576Tech_Off10Isr_MainFunc.src LSR_Off;766At the end of the function LSR_Off;766Tech_Off10Isr_MainFunc.src LSR_Off;762At the start of the function LSR_Off;762Tech_Off10Isr_MainFunc.src LSR_Off;762At the start of the function LSR_Off;762Tech_Pre_Off10Isr_MainFunc.src LSR_Off;770At the end of the function LSR_Off;770Tech_Pre_Off10Isr_MainFunc.src LSR_Pre_Swi;588At the end of the function LSR_Pre_Swi;598TECH_RELDEVICE00Isr_MainFunc.src LSR_Pre_Swi;598At the end of the function LSR_Pre_Swi;598TECH_INIT00Isr_MainFunc.src LSR_PIC; 60Monitoring of whether the robot interpreter is runningTECH_INIT00Isr_MainFunc.src LSR_INIT_LASER; 191If Lsr_alloc = True, after enabling of the laserTECH_INITNOALLOC00Isr_MainFunc.src LSR_INIT_LASER; 199After complete initialization LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.src LSR_IASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_StillstandControl; 331After deactivation gered, after deactivation sremovedTECH_PRE_STEP10Isr_MainFunc.src LSR_MinFunc.srcIf standstill monitoring trig- gered, after deactivation				LSR_Swi;731	action
Tech_Pre_Swi 1 0 Isr_MainFunc.src At the start of the function LSR_Pre_Swi;554 2 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;576 1 0 Isr_MainFunc.src At the start of the function Tech_Off 1 0 Isr_MainFunc.src At the start of the function LSR_Off;766 2 0 Isr_MainFunc.src As preparation for the next section with laser power 3 0 Isr_MainFunc.src At the end of the function LSR_Off;770 Tech_Pre_Off 1 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;588 2 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;588 2 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;588 2 0 Isr_MainFunc.src Monitoring of whether the robot interpreter is running TECH_RELDEVICE 0 0 Isr_MainFunc.src If Lsr_alloc = True, after enabling of the laser TECH_INIT 0 0 Isr_MainFunc.src If Lsr_alloc = False, after enabling of the laser TECH_INIT_SNSR 0		4	0	lsr_MainFunc.src	At the end of the function
LSR_Pre_Swi;554 2 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;576 1 0 Isr_MainFunc.src At the start of the function Tech_Off 1 0 Isr_MainFunc.src At the start of the function LSR_Off;746 2 0 Isr_MainFunc.src As preparation for the next section with laser power 3 0 Isr_MainFunc.src At the end of the function LSR_Off;770 Tech_Pre_Off 1 0 Isr_MainFunc.src At the start of the function LSR_Pre_Swi;588 2 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;598 1 0 Isr_MainFunc.src At the end of the function TECH_RELDEVICE 0 0 Isr_MainFunc.src Monitoring of whether the robot interpreter is running TECH_INIT 0 0 Isr_MainFunc.src If Lsr_alloc = True, after enabling of the laser TECH_INIT_INOALLOC 0 0 Isr_MainFunc.src After complete initialization TECH_INIT_SNSR 0 0 Isr_MainFunc.src				LSR_Swi;733	
20Isr_MainFunc.srcAt the end of the functionTech_Off10Isr_MainFunc.srcAt the start of the function20Isr_MainFunc.srcAt the start of the function20Isr_MainFunc.srcAs preparation for the next30Isr_MainFunc.srcAs preparation for the next30Isr_MainFunc.srcAt the end of the functionLSR_Off, 76230Isr_MainFunc.srcTech_Pre_Off10Isr_MainFunc.srcAt the end of the functionLSR_Pre_Swi;58820Isr_MainFunc.srcAt the end of the functionLSR_Pre_Swi;59820Isr_MainFunc.srcMonitoring of whether the functionTECH_RELDEVICE00Isr_MainFunc.srcMonitoring of whether the robot interpreter is runningTECH_INIT00Isr_MainFunc.srcIf Lsr_alloc = True, after enabling of the laserTECH_INITNOALLOC00Isr_MainFunc.srcIf Lsr_alloc = False, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.srcAfter complete initializationLSR_IASER_OFF;28700Isr_MainFunc.srcAfter deactivation, beforeTECH_RELDEVICE00Isr_MainFunc.srcAfter deactivation, beforeTECH_RESET00Isr_MainFunc.srcAfter deactivation, beforeSain00Isr_MainFunc.srcAfter deactivation, beforeSain00Isr_MainFunc.srcBefore the gas check <td>Tech_Pre_Swi</td> <td>1</td> <td>0</td> <td>lsr_MainFunc.src</td> <td>At the start of the function</td>	Tech_Pre_Swi	1	0	lsr_MainFunc.src	At the start of the function
Tech_Off10Isr_MainFunc.src LSR_Off;746At the start of the function LSR_Off;74620Isr_MainFunc.src LSR_Off;762As preparation for the next section with laser power30Isr_MainFunc.src LSR_Off;770At the end of the function LSR_Off;770Tech_Pre_Off10Isr_MainFunc.src LSR_Pre_Swi;588At the start of the function LSR_Pre_Swi;58820Isr_MainFunc.src LSR_Pre_Swi;588At the end of the function LSR_Pre_Swi;588TECH_RELDEVICE00Isr_MainFunc.src LSR_PLC; 60Monitoring of whether the robot interpreter is running USR_INIT_LASER; 191TECH_INIT00Isr_MainFunc.src LSR_INIT_LASER; 191If Lsr_alloc = True, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.src LSR_INIT_LASER; 199If Lsr_alloc = False, after enabling of the laserTECH_RESET00Isr_MainFunc.src LSR_INIT_LASER; 199After complete initialization LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.src LSR_INIT_LASER; 199After deactivation, before Standby is removedTECH_RELDEVICE00Isr_MainFunc.src LSR_InitCheckPeripher als; 331After deactivation, before Standby is removedTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivation<				LSR_Pre_Swi;554	
Tech_Off10Isr_MainFunc.srcAt the start of the functionLSR_Off;74620Isr_MainFunc.srcAs preparation for the next20Isr_MainFunc.srcAs preparation for the next30Isr_MainFunc.srcAt the end of the function10Isr_MainFunc.srcAt the start of the function10Isr_MainFunc.srcAt the start of the function10Isr_MainFunc.srcAt the end of the function10Isr_MainFunc.srcAt the end of the function10Isr_MainFunc.srcAt the end of the function100Isr_MainFunc.srcMonitoring of whether the robot interpreter is running100Isr_MainFunc.srcIf Lsr_alloc = True, after enabling of the laser100Isr_MainFunc.srcIf Lsr_alloc = False, after enabling of the laser100Isr_MainFunc.srcIf Lsr_alloc = False, after enabling of the laser100Isr_MainFunc.srcAfter complete initialization LSR_INIT_LASER; 199110Isr_MainFunc.srcAfter deactivation, before Standby is removed100Isr_MainFunc.srcBefore the gas check100Isr_MainFunc.srcIf standstill monitoring trig- gered, after deactivation100Isr_MainFunc.srcIstandstill monitoring trig- gered, after deactivation110Isr_MainFunc.srcIstandstill moni		2	0	lsr_MainFunc.src	At the end of the function
- LSR_Off;746 2 0 Isr_MainFunc.src As preparation for the next section with laser power 3 0 Isr_MainFunc.src At the end of the function LSR_Off;770 LSR_Off;770 At the start of the function Tech_Pre_Off 1 0 Isr_MainFunc.src At the start of the function LSR_Pre_Swi;588 2 0 Isr_MainFunc.src At the end of the function LSR_Pre_Swi;598 1 0 Isr_MainFunc.src At the end of the function TECH_RELDEVICE 0 0 Isr_MainFunc.src Monitoring of whether the robot interpreter is running TECH_INIT 0 0 Isr_MainFunc.src If Lsr_alloc = True, after enabling of the laser TECH_INITNOALLOC 0 0 Isr_MainFunc.src If Lsr_alloc = False, after enabling of the laser TECH_INIT_SNSR 0 0 Isr_MainFunc.src After complete initialization LSR_INIT_LASER; 199 1 0 Isr_MainFunc.src After deactivation, before Standby is removed TECH_RESET 0 0 Isr_MainFunc.src After deactivation, before Standby is removed TECH_RELDEVICE <t< td=""><td></td><td></td><td></td><td>LSR_Pre_Swi;576</td><td></td></t<>				LSR_Pre_Swi;576	
20Isr_MainFunc.src LSR_Off, 762As preparation for the next section with laser power30Isr_MainFunc.src LSR_Off,770At the end of the function LSR_Off,770Tech_Pre_Off10Isr_MainFunc.src LSR_Pre_Swi;588At the end of the function LSR_Pre_Swi;598TECH_RELDEVICE00Isr_MainFunc.src LSR_PLC; 60At the end of the function usr_MainFunc.src LSR_PLC; 60TECH_INIT00Isr_MainFunc.src LSR_PLC; 60Monitoring of whether the robot interpreter is runningTECH_INIT00Isr_MainFunc.src LSR_INIT_LASER; 191If Lsr_alloc = True, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.src LSR_INIT_LASER; 196If Lsr_alloc = False, after enabling of the laserTECH_RESET00Isr_MainFunc.src LSR_INIT_LASER; 199At the end of the function LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_INITChckPeripher als; 331After deactivation, before Standby is removedTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivation	Tech_Off	1	0	lsr_MainFunc.src	At the start of the function
LSR_Off; 762section with laser power30Isr_MainFunc.srcAt the end of the functionTech_Pre_Off10Isr_MainFunc.srcAt the start of the functionLSR_Pre_Swi;58820Isr_MainFunc.srcAt the end of the functionTECH_RELDEVICE00Isr_MainFunc.srcAt the end of the functionTECH_INIT00Isr_MainFunc.srcMonitoring of whether the robot interpreter is runningTECH_INIT00Isr_MainFunc.srcIf Lsr_alloc = True, after enabling of the laserTECH_INITNOALLOC00Isr_MainFunc.srcIf Lsr_alloc = False, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.srcAfter complete initialization LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.srcAfter deactivation, before Standby is removedTECH_RELDEVICE00Isr_MainFunc.srcAfter deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.srcAfter deactivation, before Standby is removedTECH_NOMOTION0Isr_MainFunc.srcIsradistill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.srcIf standstill monitoring trig- gered, after deactivation				LSR_Off;746	
InstructionInstructionInstruction30Isr_MainFunc.srcAt the end of the functionIsr_Pre_Swift10Isr_MainFunc.srcAt the start of the functionIsr_MainFunc.srcAt the end of the functionIsr_MainFunc.srcAt the end of the functionISR_Pre_Swift20Isr_MainFunc.srcAt the end of the functionISR_Pre_Swift00Isr_MainFunc.srcMonitoring of whether the robot interpreter is runningTECH_RELDEVICE00Isr_MainFunc.srcIf Isr_alloc = True, after enabling of the laserTECH_INIT00Isr_MainFunc.srcIf Isr_alloc = False, after enabling of the laserTECH_INITOALLOC00Isr_MainFunc.srcIf Isr_alloc = False, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.srcAfter complete initialization Isr_MainFunc.srcTECH_RESET00Isr_MainFunc.srcAfter deactivation, before Standby is removedTECH_RELDEVICE00Isr_MainFunc.srcAfter deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.srcBefore the gas checkLSR_INIT_LASER_OFF; 287287If standstill monitoring trig- gered, after deactivationTECH_NOMOTION0Isr_MainFunc.srcIf standstill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.srcAt the start of the function		2	0	lsr_MainFunc.src	
Tech_Pre_Off10Isr_MainFunc.src LSR_Pre_Swi;588At the start of the function LSR_Pre_Swi;58820Isr_MainFunc.src LSR_Pre_Swi;598At the end of the function LSR_Pre_Swi;598TECH_RELDEVICE00Isr_MainFunc.src LSR_PLC; 60Monitoring of whether the robot interpreter is running ISR_NIT_LASER; 191TECH_INIT00Isr_MainFunc.src LSR_INIT_LASER; 191If Lsr_alloc = True, after enabling of the laserTECH_INITOALLOC00Isr_MainFunc.src LSR_INIT_LASER; 196If Lsr_alloc = False, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.src LSR_INIT_LASER; 199After complete initialization LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_RELDEVICE00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivation				LSR_Off; 762	section with laser power
Tech_Pre_Off10Isr_MainFunc.src LSR_Pre_Swi;588At the start of the function LSR_Pre_Swi;598TECH_RELDEVICE00Isr_MainFunc.src LSR_Pre_Swi;598At the end of the function Isr_MainFunc.src LSR_PLC; 60TECH_INIT00Isr_MainFunc.src LSR_INIT_LASER; 191Monitoring of whether the robot interpreter is runningTECH_INIT00Isr_MainFunc.src LSR_INIT_LASER; 191If Lsr_alloc = True, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.src LSR_INIT_LASER; 199If Lsr_alloc = False, after enabling of the laserTECH_RESET00Isr_MainFunc.src LSR_INIT_LASER; 199After complete initialization LSR_INIT_LASER; 199TECH_RELDEVICE00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_INITLCREVPIPHER als; 331After deactivation, before Standby is removedTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivation		3	0	lsr_MainFunc.src	At the end of the function
LLL				LSR_Off;770	
20Isr_MainFunc.src LSR_Pre_Swi;598At the end of the function ISR_MainFunc.src LSR_PLC; 60TECH_RELDEVICE00Isr_MainFunc.src LSR_PLC; 60Monitoring of whether the robot interpreter is runningTECH_INIT00Isr_MainFunc.src LSR_INIT_LASER; 191If Lsr_alloc = True, after enabling of the laserTECH_INITNOALLOC00Isr_MainFunc.src LSR_INIT_LASER; 196If Lsr_alloc = False, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.src LSR_INIT_LASER; 199After complete initialization LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.src LSR_INIT_LASER; 231After deactivation, before Standby is removedTECH_RELDEVICE00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_InitCheckPeripher als; 331If standstill monitoring trig- gered, after deactivationTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivation	Tech_Pre_Off	1	0	lsr_MainFunc.src	At the start of the function
TECH_RELDEVICE00Isr_MainFunc.src LSR_PLC; 60Monitoring of whether the robot interpreter is runningTECH_INIT00Isr_MainFunc.src LSR_INIT_LASER; 191If Lsr_alloc = True, after enabling of the laserTECH_INITNOALLOC00Isr_MainFunc.src LSR_INIT_LASER; 196If Lsr_alloc = False, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.src LSR_INIT_LASER; 199If Lsr_alloc = False, after enabling of the laserTECH_RESET00Isr_MainFunc.src LSR_INIT_LASER; 199After complete initialization LSR_INIT_LASER; 199TECH_RELDEVICE00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_InitCheckPeripher als; 331After deactivation, before Standby is removedTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.src LSR_MainFunc.srcAt the start of the function				LSR_Pre_Swi;588	
TECH_RELDEVICE00Isr_MainFunc.src LSR_PLC; 60Monitoring of whether the robot interpreter is runningTECH_INIT00Isr_MainFunc.src LSR_INIT_LASER; 191If Lsr_alloc = True, after enabling of the laserTECH_INITNOALLOC00Isr_MainFunc.src LSR_INIT_LASER; 196If Lsr_alloc = False, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.src LSR_INIT_LASER; 199After complete initialization LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.src LSR_INIT_LASER; 199After deactivation, before Standby is removedTECH_RELDEVICE00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_InitCheckPeripher als; 331Before the gas checkTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivation		2	0	lsr_MainFunc.src	At the end of the function
TECH_INIT00Isr_MainFunc.src LSR_INIT_LASER; 191If Lsr_alloc = True, after enabling of the laserTECH_INITNOALLOC00Isr_MainFunc.src LSR_INIT_LASER; 196If Lsr_alloc = False, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.src LSR_INIT_LASER; 199After complete initialization LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.src LSR_INIT_LASER; 199After deactivation, before Standby is removedTECH_RELDEVICE00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_InitCheckPeripher als; 331Before the gas checkTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivation				LSR_Pre_Swi;598	
TECH_INIT00Isr_MainFunc.src LSR_INIT_LASER; 191If Lsr_alloc = True, after enabling of the laserTECH_INITNOALLOC00Isr_MainFunc.src LSR_INIT_LASER; 196If Lsr_alloc = False, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.src LSR_INIT_LASER; 199After complete initialization LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.src LSR_INIT_LASER; 231After deactivation, before Standby is removedTECH_RELDEVICE00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_InitCheckPeripher als; 331If standstill monitoring trig- gered, after deactivationTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivation	TECH_RELDEVICE	0	0	lsr_MainFunc.src	-
Image: Constraint of the laseImage: Constraint of the laseImage: Constraint of the laseTECH_INITNOALLOC00Isr_MainFunc.srcIf Lsr_alloc = False, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.srcAfter complete initialization LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.srcAfter complete initialization Lsr_Reset_Flags; 231TECH_RELDEVICE00Isr_MainFunc.srcAfter deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.srcBefore the gas checkTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.srcAt the start of the function				LSR_PLC; 60	robot interpreter is running
TECH_INITNOALLOC00Isr_MainFunc.src LSR_INIT_LASER; 196If Lsr_alloc = False, after enabling of the laserTECH_INIT_SNSR00Isr_MainFunc.src LSR_INIT_LASER; 199After complete initialization LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.src LSR_Reset_Flags; 231At the end of the function Lsr_Reset_Flags; 231TECH_RELDEVICE00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_InitCheckPeripher als; 331Before the gas checkTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.src LSR_MainFunc.srcAt the start of the function	TECH_INIT	0	0	Isr_MainFunc.src	
LLLImage: Constraint of the lase of				LSR_INIT_LASER; 191	enabling of the laser
TECH_INIT_SNSR00Isr_MainFunc.src LSR_INIT_LASER; 199After complete initialization LSR_INIT_LASER; 199TECH_RESET00Isr_MainFunc.src LSr_Reset_Flags; 231At the end of the function Lsr_Reset_Flags; 231TECH_RELDEVICE00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_InitCheckPeripher als; 331Before the gas checkTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.src LSR_MainFunc.srcAt the start of the function	TECH_INITNOALLOC	0	0	Isr_MainFunc.src	
LLLTECH_RESET00Isr_MainFunc.srcAt the end of the functionLSR_Reset_Flags; 231Lsr_Reset_Flags; 231After deactivation, beforeTECH_RELDEVICE00Isr_MainFunc.srcAfter deactivation, beforeLSR_LASER_OFF; 287287Standby is removedTECH_INITPERI00Isr_MainFunc.srcBefore the gas checkLSR_InitCheckPeripher als; 331If standstill monitoring trig- gered, after deactivationTECH_NOMOTION00Isr_MainFunc.srcLSR_StillstandControl; 33131If standstill monitoring trig- gered, after deactivation				LSR_INIT_LASER; 196	enabling of the laser
TECH_RESET00Isr_MainFunc.src Lsr_Reset_Flags; 231At the end of the functionTECH_RELDEVICE00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_InitCheckPeripher als; 331Before the gas checkTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.src LSR_MainFunc.srcAt the start of the function	TECH_INIT_SNSR	0	0	Isr_MainFunc.src	After complete initialization
LLLLsr_Reset_Flags; 231TECH_RELDEVICE00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_InitCheckPeripher als; 331Before the gas checkTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.src LSR_MainFunc.srcIf standstill monitoring trig- gered, after deactivation				LSR_INIT_LASER; 199	
TECH_RELDEVICE00Isr_MainFunc.src LSR_LASER_OFF; 287After deactivation, before Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_InitCheckPeripher als; 331Before the gas checkTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.src LSR_MainFunc.srcIf standstill monitoring trig- gered, after deactivation	TECH_RESET	0	0	lsr_MainFunc.src	At the end of the function
Image: Constraint of the start of the functionStandby is removedStandby is removedLSR_LASER_OFF; 287Standby is removedTECH_INITPERI00Isr_MainFunc.src LSR_InitCheckPeripher als; 331Before the gas checkTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.src LSR_MainFunc.srcAt the start of the function				Lsr_Reset_Flags; 231	
LSR_LASER_OFF; 287LSR_LASER_OFF; 287TECH_INITPERI00Isr_MainFunc.src LSR_InitCheckPeripher als; 331Before the gas checkTECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.src LSR_MainFunc.srcAt the start of the function	TECH_RELDEVICE	0	0	lsr_MainFunc.src	
LSR_InitCheckPeripher als; 331					Standby is removed
als; 331TECH_NOMOTION00Isr_MainFunc.src LSR_StillstandControl; 331If standstill monitoring trig- gered, after deactivationTECH_PRE_STEP10Isr_MainFunc.srcAt the start of the function	TECH_INITPERI	0	0	Isr_MainFunc.src	Before the gas check
LSR_StillstandControl; gered, after deactivation TECH_PRE_STEP 1 0 Isr_MainFunc.src At the start of the function					
TECH_PRE_STEP 1 0 Isr_MainFunc.src At the start of the function	TECH_NOMOTION	0	0	Isr_MainFunc.src	00
					gered, after deactivation
LSR PRE Step: 801	TECH_PRE_STEP	1	0	Isr_MainFunc.src	At the start of the function
				LSR_PRE_Step; 801	

9.3.2 Interface to the laser control LSR_Tech_IFC

Action	CallID	Arg	Call	Description
LSR_ON_RDY	0	0	lsr_TR_IFC.src	At the end of the func-
			LSR_ON_AND_READY; 150	tion
LSR_TECHSTOP	0	0	lsr_TR_IFC.src	At the end of the func-
			LSR_ANOUT_TECHSTOP; 579	tion, if power was acti- vated
LSR_ISR_STOP	0	0	lsr_TR_IFC.src	At the start of the func-
			LSR_ANOUT_ISR_STOP; 591	tion, if power was acti- vated
LSR_ISRRESTORE	0	0	lsr_TR_IFC.src	At the start of the func-
			LSR_ANOUT_ISR_RESTO RE; 612	tion, if power was acti- vated

9.3.3 Interface to media LSR_Media_IFC

Action	CallID	Arg	Call	Description
Tech_ON	1	fswi	Lsr_MediaFunc.src	Switch on all gases,
			LSR_GAS_SWI;432	TechHandles #Tech and #Weld
	2	fswi	Lsr_MediaFunc.src	Switch on all gases, all
			LSR_GAS_SWI;434	other TechHandles
	3	ipressure	Lsr_MediaFunc.src	Switch root gas if
			LSR_GAS_SWI;445	Lsr_RootFlag = false
	4	ipressure	Lsr_MediaFunc.src	Switch root gas if
			LSR_GAS_SWI;451	Lsr_RootFlag = false, second call
	5	ipressure	Lsr_MediaFunc.src	Switch on cutting gas,
			LSR_GAS_SWI;454	before valves opened
	6	ipressure	Lsr_MediaFunc.src	Switch on cutting gas,
			LSR_GAS_SWI;456	after valves opened
GAS_INIT	0	0.0	LSR_InitGas.src	After cycflag definition,
			LSR_InitGas;44	TechHandle #CUT, #WELD
	11	0.0	LSR_InitGas.src	After cycflag definition, all
			LSR_InitGas;51	other TechHandles
TECH_CHECK _GAS	0	0.0	Isr_MainFunc.src	If TechHandle #Weld or
			LSR_GAS_CHECK;104	Lsr_usrootflag = true
	11	0.0	lsr_MainFunc.src	If TechHandle #Tech
			LSR_GAS_CHECK;97	

ΚυκΑ

9.3.4 Interface to error handling LSR_ERR_IFC

Action	CallID	Arg	Call	Description
ERR_SENSOR	0	0	lsr_err_handler.src LSR_RESTART_LASER; 202	Call if the restart option <i>Cold</i> is selected as the response in the dialog dis- played after an error. This call is the last call in the branch.
	1	0	lsr_err_handler.src LSR_RESTART_LASER; 217	Call if the restart option Seam cold is selected as the response in the dialog displayed after an error. This call is the last call in the branch.
	2	0	lsr_err_handler.src LSR_RESTART_LASER; 236	Call if the restart option <i>Cold section</i> is selected as the response in the dialog displayed after an error. This call is the last call in the branch.
	3	0	lsr_err_handler.src LSR_RESTART_LASER; 236	Call if the restart option <i>Hot</i> is selected as the response in the dialog displayed after an error. This call is the first call in the branch.
	4	0	lsr_err_handler.src LSR_SENSOR_ERROR, 544	If the error is a sensor error, this call is made after deac- tivation of the laser.
ERR_LASER_SAFE TY	0	0	lsr_err_handler.src LSR_LASER_SAFETY(); 27	After the process has been deactivated, technology- specific actions may be executed here.
	1	0	lsr_err_handler.src LSR_LASER_SAFETY(); 68	After dialogs have been responded to and the cause of the error has been elimi- nated, technology-specific actions and further dialogs may be executed here.
ERR_GAS	0	0	Isr_err_handler.src LSR_MEDIA_ERROR();1 21	After all default handling strategies after a gas error have been carried out, a technology-specific code may be executed.
ERR_WIRE	0	0	lsr_err_handler.src LSR_MEDIA_ERROR();1 26	The call takes place after the technology-specific gas action and the user gas action.
ERR_MEDIA	0	0	lsr_err_handler.src LSR_RESTART_LASER; 239	Call if the restart option <i>Hot</i> is selected as the response in the dialog displayed after an error.

Action	CallID	Arg	Call	Description	
ERR_RESTART	1	0	lsr_err_handler.src	As preparation for the next	
			LSR_RESTART_LASER; 208	seam with laser power.	
	2	0	lsr_err_handler.src	As preparation for the next	
			LSR_RESTART_LASER; 228	section with laser power.	
	3	0	lsr_err_handler.src	Error handling is completed,	
			LSR_RESTART_LASER; 250	the laser is ready to con- tinue welding.	
	4	0	lsr_err_handler.src	Laser restart procedure	
			LSR_RESTART_LASER; 259		
	5 0	0	lsr_err_handler.src	Laser restart procedure	
			LSR_RESTART_LASER; 274	failed.	
ERR_SHUTDOWN	0	0	lsr_err_handler.src	In the event of an error,	
			SHUT_DOWN_PROCES S; 341	after termination of the pro- cess	
	11	0	lsr_err_handler.src	In the event of an error,	
			SHUT_DOWN_PROCES S; 355	after the process has reached the end of the shut- down routine	
ERR_LSR_INIT	0	0	lsr_err_handler.src	If an error was triggered,	
			LSR_ISR_INIT_LASER; 450	due to an interrupt, on start- ing re-initialization	
	11	0	lsr_err_handler.src	If an error was triggered,	
			LSR_ISR_INIT_LASER; 457	due to an interrupt, on com- pleting re-initialization	

10 Messages KUKA

Messages 10

10.1 Basic laser function messages

Message	Description/remedy	Кеу
Collision protection device triggered! Please move the robot clear in Test1 or Test2 mode	 A collision has occurred. Move away from the collision in T1 or T2 mode. Resume program execution or re- set program and laser. 	CollissionDe- tected
The laser shutter will be closed dur- ing block selection	For safety reasons, use of the laser power is prevented during block selection.	LaserShutDown- AtBlockSelect
Laser is still not activated: No LASER ON state	 Possible causes: The laser is not switched on. The laser is currently being reset. The laser is in manual mode. 	NoLaserOnSta- tus
No laser application possible without crossjet!	Activate CrossJet.Acknowledge the message.Resume or restart program.	MissingCrossJet
Block command failed.	An error has occurred during execu- tion of a technology-specific instruc- tion. Please contact the Service Depart- ment if this error recurs.	BlockCommand- Failed
No valid inline form	An error has occurred during execu- tion of a technology-specific instruc- tion. Please contact the Service Depart- ment if this error recurs.	NoInlineForm
Wrong value of \$PRO_I_O[] (\$CUS- TOM.DAT) or no submit routine selected	Deselect program.Deselect Submit.Change value, start Submit.	WrongSubmitInt- erpreter
Error message at laser system	Eliminate laser error.Acknowledge the message.Resume or restart program.	ErrorAtLaser
Continuing the process only sensible with correct operating mode and pre- vious overide value!	 A collision has occurred. Move away from the collision in T1 or T2 mode. Reset program and laser. 	CollissionCor- rectModeOpera- tion
Internal error!	An error has occurred during execu- tion of a technology-specific instruc- tion. Please contact the Service Depart- ment if this error recurs.	InternalError
No gas available! Please check gas equipment	This error message is triggered by the process gas monitoring.	NoGasFlow

Message	Description/remedy	Key
Laser is not available and shutter is closed	 Possible causes: A required signal has not been generated or was not detected by the laser. Error in the laser controller 	NoLaserActive- AndShutter- Closed
No feedback of the laser by external control	 The signal LSRI_LsrExternEnabled is not generated. Possible causes: The laser is not switched on. The laser is currently being reset. The laser is in manual mode. 	NoExternMode- Possible
Laser is still not in standby mode	 Possible causes: A required signal has not been generated or was not detected by the laser. Error in the laser controller 	LaserStillNotIn- Standby
Laser still not ready or not assigned	 The laser program cannot be started. Possible causes: The laser is not switched on. The laser is currently being reset. The laser is in manual mode. 	LaserStill- NotReady
Laser flags critical error to cell con- trol	An error has occurred in the laser periphery. Depending on the configuration, this may also be a robot error.	LsrExternError
Laser still waiting for allocation	The instruction LSR Allocate has been called. The laser is not free, however. This message is displayed during the wait time.	LaserWaiting- ForAllocation
Laser error -> Details on console of laser system	Refer to message on the laser con- sole.	DetailsToLsrEr- rorsOnConsole
Laser error -> Details on laser con- sole> Resumption of program after laser reset	Refer to message on the laser con- sole.	LsrErrorLookOn- Console
Laser error has occurred	 Eliminate laser error. Acknowledge the message. Resume or restart program. Depending on the nature of the error, the message "ErrorAtLaser" may also be generated. 	LaserErrorAvail- able
Invalid laser command -> LASER INIT command necessary	An invalid laser command has been initiated. A program reset is generally required.	LaserCommand- IncompatibleTo- Package

10 Messages KUKA

Message	Description/remedy	Кеу
Laser program was canceled	 The laser signals the cancelation of an active program. Possible causes: The signal LSRO_LsrReset is set during an active program. The signal LSRO_LsrStartStatic is reset before the signal LSRO_LsrStopProgram has been set. 	LsrProgramCan- cel
Laser program could not be acti- vated: Please check errors on laser console	 Possible causes: A required signal has not been generated or was not detected by the laser. Error in the laser controller 	NotProgramAc- tive
Laser was switched to manual mode > Resumption of process after laser reset	Cause: Manual mode has been forced on the laser console.	LsrInManual- Mode
Check media control!	Eliminate media error.Acknowledge the message.Resume or restart program.	CheckMedia- Control
Periphery not in a safe state	Check the safety equipment.Eliminate problem.Reset program and laser.	LsrPeripheryNot- Safe
Complete program will be continued without active process. Resumption with active process by executing LASER_INIT command	Cause: Following an error, this option (= continue complete program with- out active process) has been selected as a response in a dialog window.	CompleteCold- Run
Cold run selected	Cause: The program is executed without laser power. The status key "Laser off" is displayed. Remedy: Activate the laser using the status key.	NoLsrControl- ColdRun
Program was aborted or external error signal active	 Eliminate problem. Acknowledge the message. Resume or restart program. 	ProgAbortOrExt- Failure
No process gas!	Activate process gas.Acknowledge the message.Resume or restart program.	MissingProcess- Gas
Please acknowledge errors on laser console first	Laser errors cannot be reset from the robot.	LsrReceiptMes- sage
Robot was stopped by an interpreter stop	 The robot interpreter has been stopped by: STOP key EMERGENCY STOP Operator safety Operating mode change Releasing the enabling switch 	LsrInTechStop

Message	Description/remedy	Кеу
Laser safety circuit is still open:	Possible causes:	SikContactOpen
Ensure laser safety before the robot	The safety circuit is open.	
program is resumed	 Light path settings in the laser do not match the requested light path. 	
Safety circuit open, shutter closed	Possible causes:	ShutterOpen
	The safety circuit is open.	
	 Light path settings in the laser do not match the requested light path. 	
Standstill monitoring: Laser was switched off because robot welded for too long at the same position	If welding is to be carried out for lon- ger at a specific position, i.e. without robot motion, the value of LSR_Stop_InspectionTime must be increased.	RobotStandStill
Standstill monitoring: Laser has not been used for a long time and has just been shut down	The interval after which the laser is deactivated can be increased in the configuration. (LSR_LaserStandbyDelay)	LaserStandStill
Robot stopped> Resumption of the process	 Eliminate cause of the stop reac- tion. 	LsrRobotError
	 Answer the dialog and resume or restart the program. 	
Error of laser system> Resump- tion of process possible after dialog and forced reset of laser	Refer to message on the laser con- sole.	CollectionErro- rOfLaser
Test commands only possible in operating mode Test1 or Test2!	Change operating mode.Restart the program.	NoFocusPulsIn- Automatic
Invalid parameter list	An error has occurred during execu- tion of a technology-specific instruc- tion.	ParamListHan- dleUnknown
	Please contact the Service Depart- ment if this error recurs.	
Insufficient gas pressure! Please check gas equipment.	Eliminate problem.Reset program.	NotEnoughGas- Pressure
No root gas!	Activate root gas.Acknowledge the message.Resume or restart program.	MissingRootGas
Cell or laser safety error. Check safety equipment!	 Resume of restart program. Eliminate problem. Acknowledge the message. Resume or restart program. 	LsrCellOrSafety- Error
Gas pressure too low. The current program will be aborted. Please check gas !!!	 Correct the gas pressure. Acknowledge the message. Resume or restart program. 	LastPartToLess- Gas
Laser allocation denied	Possible causes:The laser is allocated to a different station.	LaserAllocation- Avoided
	The laser is in manual mode.	
	An error has occurred.	

LaserCut messages 10.2

Message	Description/remedy	Кеу
Error in user-defined sensor code!	An error has occurred within the user-defined function so that the return value <> 0.	ErrorInUserDef- SnsrProc
	Remedy: Eliminate the error and ensure that the return value = 0.	
Function not implemented!	A non-implemented function has been called. Please inform the Ser- vice Department.	NOT_IMPLEME NTED
Initialization of user-defined sensor code failed!	An error has occurred within the user-defined function so that the return value <> 0.	InitOfUserDef- SensorFailed
	Remedy: Eliminate the error and ensure that the return value = 0.	
Programmed position not reached	 Reset the sensor using the sensor controller. 	NoProgPos
	 Reset program. 	
Sensor error	Eliminate the sensor controller error and acknowledge the message.	SnsrError
Sensor cable interrupted!	Eliminate problem.	SnsrCableError
	 Reset program. 	
Collision monitoring	The distance sensor signals a colli- sion. Eliminate the sensor controller error and acknowledge the message.	SnsrCollision
Use of a reserved sensor type!	An attempt has been made to initial- ize a reserved sensor type within a user-defined function.	UseOfReseverd- SnsrType

10.3 LaserWeld messages

Message	Description/remedy	Key
Wire or wirefeeder not available	 Check wire feed system. Check configuration for the wire feed system in the robot controller. 	WireFeeder- NotReady
Please acknowledge errors of the wirefeed unit	 Acknowledge message on wire feed system. Acknowledge this message on 	WfdReceiptMes- sage
Please acknowledge errors on the wire heater unit	 the robot controller. Acknowledge message on the welding wire heater. 	AcknWfdHeat- Message
	 Acknowledge this message on the robot controller. 	Ŭ
Wire heater error	Eliminate error in the wire heater.Acknowledge the message.	WireFeedHeat- Problem

Κυκα

11 Appendix

11.1 Configuring LaserTech

11.1.1 LaserTech: analog inputs/outputs, interrupts, timers and cyclical flags

The numbers for inputs/outputs, interrupts, timers and cyclical flags must only be assigned once in the entire robot controller.

NOTICE Incorrect configuration of the internal analog channels can result in the laser working with incorrect parameters. Damage to the system may result.

Analog outputs

Outputs 1 to 32 are available.

Output	Description	Default
LSRO_LsrPwr	Analog channel for the laser power	2
LSRO_GasPressure	Analog channel for gas pressure	4

Analog inputs

Inputs 1 to 32 are available.

Output	Description	Default
LSRI_GasPressure	Analog channel for gas pressure	4

Interrupts

NOTICE If the priority of the interrupts is changed, this may result in a double assignment. Furthermore, the interrupts for the LaserTech monitoring functions may receive a priority that is so low that they are processed too late. This can cause damage to the system.

Interrupts 1 to 39 are available.

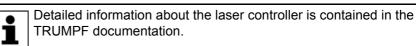
Interrupt	Description	Default
LSR_InterrAntiCollission	Interrupt number for the anticollision monitoring	7
LSR_InterruptLaserSafety	Interrupt number for the laser safety. The error states of the laser are monitored.	8
LSR_InterruptDistSensor	Interrupt number for the distance sensor	9
LSR_InterruptMedias	Interrupt number for the media controller.	10
LSR_InterruptStepMon	Interrupt number for the step seam monitoring	11
LSR_AnoutCheck	Interrupt number for monitoring of the laser power on analog channel LSRO_LsrPwr	12
LSR_InterruptUsrTech	Only relevant if user-defined applications are used and these require a separate interrupt	30
	Interrupt number for monitoring a user-specific function	

Timer Timers 1 to 32 are available.

Timer	Description	Default
LSR_TC_PostGas	Timer number for the gas postflow time	15
LSR_TC_PreFlowGas	Timer number for the gas preflow time	16

KUKA

Timer	Description	Default
LSR_TC_STEP	Timer number for the step function	17
LSR_TC_Check	Timer number for internal timeouts, e.g. gas moni- toring or checkback signals of the laser	18


Cycflags

NOTICE If the number of cyclical flags is changed, this may result in a double assignment. Furthermore, the numbers of the cyclical flags for the LaserTech monitoring functions may be overwritten. This can cause damage to the system.

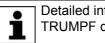
Cycflags 1 to 32 are available.

Cycflag	Description	Default
LSR_CF_GasCtrl	Cycflag number for the gas controller	13
LSR_CF_STEPCTRL	Cycflag number for the step seam monitoring	28
LSR_CF_STEP	Cycflag number for the step controller	29
LSR_CF_LaserCtrl	Cycflag number for the laser monitoring	30
LSR_CF_AnoutCheck	Cycflag number for monitoring of the laser power on analog channel LSRO_LsrPwr	31
LSR_CF_MediaCtrl	Cycflag number for the media monitoring	32
LSR_CF_UsrTech	Only relevant if user-defined applications are used and these require a separate interrupt Cycflag number for monitoring a user-specific func-	27
	tion	

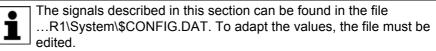
11.1.2 LaserTech: signal outputs to the laser

The signals described in this section can be found in the fileR1\System\\$CONFIG.DAT. To adapt the values, the file must be edited.

LASERTECH GLOBALS


LASER OUTPUTS

Signal	Description	Туре	\$OUT[]
LSRO_LsrRequest	Request laser.	BOOL	97
LSRO_LsrPilotOn	Switch pilot laser on.	BOOL	98
LSRO_LsrSync1	Synchronize laser with robot (1). Query whether laser is ready.	BOOL	103
	Note : By default, the robot controller uses LSRO_LsrSync1 for the query.		
LSRO_LsrSync2	Synchronize laser with robot (2). Query whether laser is ready.	BOOL	102
LSRO_LsrFaultExtern	Robot fault (fault that is external to the laser controller)	BOOL	104
LSRO_LsrReset	Reset laser.	BOOL	105
LSRO_LsrStopProgram	Stop laser program.	BOOL	106
LSRO_LsrStartDynamic	Laser program start dynamic	BOOL	107
LSRO_LsrStartStatic	Laser program start static	BOOL	108


Signal	Description	Туре	\$OUT[]
LSRO_LsrStandby	Set laser to standby.	BOOL	109
LSRO_LsrOn	Switch laser on.	BOOL	110
LSRO_LsrOperationOff	Disable laser console.	BOOL	111
LSRO_LsrExternControl	Enable external control.	BOOL	112
LSRO_LsrPrgNrBCD10	BCD code program number upper bits*	4 bits	117 120
LSRO_LsrPrgNrBCD1	BCD code program number lower bits*	4 bits	113 116
LSRO_LsrPrgSetDual	Laser program number binary coded*	Byte	113 120
LSRO_LsrFiber	Light path number	Byte	121 128
LSRO_LsrLaserNr	Laser number	Byte	129 136
LSRO_LsrRobotNr	Robot number	Byte	137 144
LSRO_LsrDataWord0	Laser data word 0	Word	97 112
LSRO_LsrPwr	Analog channel for the laser power \$ANOUT[2]	INT	—
LSRO_LsrDataWord3	Laser data word 3	Word	113 128
LSRO_LsrDataWord4	Laser data word 4	Word	193 208
LSRO_LsrRampTime	Ramp length	Word	145 160
LSRO_LsrRmpUpStartVal	Ramp start value (ramp up)	Word	257 272
LSRO_LsrRmpUpEndVal	Ramp end value (ramp up)	Word	273 288
LSRO_LsrRmpDownStartVa	Ramp start value (ramp down)	Word	289 304
LSRO_LsrRmpDownEndVal	Ramp end value (ramp down)	Word	305 320

* Whether program numbers are transferred as BCD coded or binary coded values depends on the variable LSR_MPI_Interface (>>> 11.1.7 "LaserTech: process options" Page 86).

11.1.3 LaserTech: signal inputs from the laser

Detailed information about the laser controller is contained in the TRUMPF documentation.

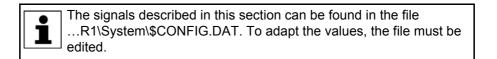
LASERTECH GLOBALS

LASER INPUTS

Signal	Description	Туре	\$IN[]
LSRI_LsrWarnLampOn	Laser warning lamps are on.	BOOL	97
LSRI_LsrPilotOn	Pilot laser is on.	BOOL	98
LSRI_LsrAssigned	Laser is assigned.	BOOL	100
LSRI_LsrInternFault	Internal laser fault	BOOL	101
LSRI_LsrFailure	Laser monitoring message The robot stops.	BOOL	102
LSRI_LsrShutterClosed	Shutter is closed.	BOOL	103
LSRI_LsrSet3	Sync input 3	BOOL	106
	Note : By default, the robot controller polls sync input 3.		
LSRI_LsrSet2	Sync input 2	BOOL	105
LSRI_LsrSet1	Sync input 1	BOOL	104
LSRI_LsrProgAbort	Laser program canceled.	BOOL	107
LSRI_LsrProgEnd	End of laser program.	BOOL	108
LSRI_LsrProgActive	Program is active.	BOOL	109
LSRI_LsrStandby	Laser is in standby.	BOOL	110
LSRI_LsrActive	Laser is active.	BOOL	111
LSRI_LsrExternEnabled	External control is enabled.	BOOL	112
LSRI_LsrFiberNo	Enabled light path number	Word	145 160
LSRI_LsrFiberSafetyCode	Light path number via safety box	Word	161 176

11.1.4 LaserTech: signal outputs to the welding periphery

The signals described in this section can be found in the fileR1\System\\$CONFIG.DAT. To adapt the values, the file must be edited.


LASERTECH GLOBALS

INTEGRATION peripheri devices

Signal	Description	Туре	\$OUT[]
LSRO_Error_Cell	Cell error (flag to PLC)	BOOL	501
LSRO_Error_Media	Media error (flag to PLC)	BOOL	501
LSRO_AntiCollissionDev	Collision monitoring (flag to PLC)	BOOL	502
LSRO_Error_Sensor	Sensor error (flag to PLC)	BOOL	503
LSRO_ColdFor1Section	The next seam section is executed with- out power (flag to PLC)	BOOL	504
	A section is defined as what comes between the instructions Activate pro- cess , Switch process and Deactivate process .		
LSRO_ColdFor1Seam	The next seam is executed without power (flag to PLC).	BOOL	505
	A seam is defined as what comes between the instructions Activate pro- cess and Deactivate process .		

Signal	Description	Туре	\$OUT[]
LSRO_ColdForEver	Without power until the next laser initial- ization (flag to PLC)	BOOL	506
LSRO_ColdApplication	The complete program is executed with- out power (flag to PLC).	BOOL	507
LSRO_CrossJet	Activate/deactivate CrossJet.	BOOL	515
LSRO_GasPressure	Only relevant if a proportional gas valve is used (LSR_PropGasValve = TRUE). Number of the analog channel for the gas pressure \$ANOUT[4]	INT	_
LSRO_GasEnable	Only relevant if a proportional gas valve is used (LSR_PropGasValve = TRUE).	BOOL	72
	Output enable the selected gas		
	Note : Normally used with an additional main valve.		

11.1.5 LaserTech: signal inputs from the welding periphery

LASERTECH GLOBALS

INTEGRATION peripheri devices

Signal	Description	Туре	\$IN[]
LSRI_AntiCollisionDev	This input can be used for collision moni- toring.	BOOL	1025
LSRI_UsrInput1	These user-specific inputs can be used	BOOL	1025
LSRI_UsrInput2	to integrate customer signals into the process monitoring in order to stop the process in the event of a fault.	BOOL	1025
LSRI_CrossJet	Checkback CrossJet OK	BOOL	1025
LSRI_GasPressure	Only relevant if a proportional gas valve is used (LSR_PropGasValve = TRUE).	INT	—
	Number of the analog channel for the gas pressure \$ANIN[4]		

11.1.6 LaserTech: system outputs and system flags

The variables described in this section can be found in the file Laser.dat in the directory R1\TP\LaserTech. To display or change the values, select **Display** > **Variable** > **Single** from the main menu.

Variable	Description
S_Int_Flag	Submit watchdog
	This digital output can be used together with the variable S_Int_Cycl to monitor whether the submit interpreter is running cyclically. The monitor- ing only works usefully if this output is continuously TRUE. To achieve this, the value of S_Int_Cycl must be a little higher than the cycle time of the SPS.SUB program.
	(>>> 11.1.8 "LaserTech: process constants" Page 88)
	Default: 765
LSRO_Error_Bypass	Masking of digital input events
	If an interrupt is activated while the condition for this interrupt is met, e.g. because the corresponding cycflag is true, then the interrupt cannot trigger. The output LSRO_Error_Bypass is used to set the cycflag via a pulse instruction to ensure that the condition is not met at the point in time at which the interrupt is activated. At the end of the pulse, the interrupt can react.
	This digital output is used internally during monitoring of the process. The output may only be used once.
	Default: 601
AnoutBypass	Masking of analog input events (functionality as with LSRO_Error_Bypass)
	This digital output is used internally during monitoring of the process. The output may only be used once.
	Default: 602
LSR_UserErrorFLAG	To allow other installed options to interrupt the laser process, this vari- able can be set to FALSE. The interrupt is then triggered and the pro- cess terminated.

11.1.7 LaserTech: process options

•	The variables described in this section can be found in the file La-
Ť	The variables described in this section can be found in the file La- ser.dat in the directory R1\TP\LaserTech. To display or change the values, select Display > Variable > Single from the main menu.
-	values, select Display > Variable > Single from the main menu.

Variable	Description
LSR_MPI_Interface	Coding of the program number
	TRUE = Program number is transferred as a binary-coded value, i.e. as an 8-bit binary number (00 255).
	FALSE = Program number is transferred as a BCD-coded value, i.e. 4 bits for the units and 4 bits for the tens of the program number (00 99).
	Default: TRUE
LSR_CrossJetOption	Activate/deactivate CrossJet.
	TRUE = CrossJet is activated on initialization of the laser and deacti- vated at the end of the program.
	FALSE = CrossJet is activated and deactivated via the inline forms Activate process , Deactivate process and Switch gas .
	Default: FALSE

11 Appendix KUKA

Variable	Description
LSR_UsePwrVelCtrld	Activate/deactivate the velocity-dependent laser power.
	TRUE = Laser power is dependent on the robot velocity.
	FALSE = Laser power remains constant at the value entered in the inline form.
	Default: FALSE
LSR_LsrFiberMirrorO	Activate/deactivate mirroring of the light path number.
ption	TRUE = The laser fiber number mirrored by the laser controller is evalu- ated.
	FALSE = The laser fiber number mirrored by the laser controller is not evaluated.
	Default: FALSE
LSR_UseGas	Use gas when executing the program.
	TRUE = The programs are executed with gas.
	FALSE = The programs are executed without gas. This is suitable, for example, for test purposes where no gas is desired.
	Default: TRUE
	Note : Gases selected in the inline form Switch gas are nonetheless activated if LSR_UseGas = FALSE.
LSR_NoProc	Do not use gas when executing the program without laser power.
	TRUE = Gas is not activated when executing the program without laser power.
	FALSE = Gas is activated when executing the program without laser power.
	Default: TRUE
LSR_PropGasValve	Only relevant if process or cutting gases are used, not relevant for root gases and CrossJet.
	Use proportional gas valve.
	TRUE = The gas pressure can be defined in the inline form Switch gas .
	FALSE = The gas pressure cannot be defined in the inline form Switch gas.
	Default: FALSE
	The value of this variable also influences which properties can be defined for the gases.
	(>>> 6.5 "Configuring the inputs/outputs for gases and other properties" Page 24)
	Note : If this variable is modified, the robot controller must be rebooted with a cold start.

Variable	Description	
LSR_MIN_STBY	Reduce the standby power.	
	TRUE = The standby power is automatically reduced to 1% of the maxi- mum power. A precondition is that a laser is being used for which the minimum standby power can actually be reduced to 1%.	
	FALSE = The standby power is automatically reduced to 10% of the maximum power.	
	Default: TRUE	
	Note: If this variable is TRUE, no ramps can be executed.	
LSR_UseRootFlag	Use root gas (precondition: LaserWeld is installed).	
	TRUE = Root gas can be selected in the inline form Initialize gas with- out the WELD application being selected.	
	The weld operation can then be programmed with LaserTech instruc- tions; LaserWeld instructions are not required in the KRL program.	
	FALSE = Root gas can only be selected in the inline form Initialize gas if the WELD application is selected.	
	Default: FALSE	
	Note : If this variable is modified, the robot controller must be rebooted with a cold start.	

11.1.8 LaserTech: process constants

The specified ranges of values contain the values that will be accepted by the system. They do not, however, constitute a recommendation of which values are useful in practice.

The variables described in this section can be found in the file Laser.dat in the directory R1\TP\LaserTech. To display or change the values, select **Display** > **Variable** > **Single** from the main menu.

Variable	Description	
LSR_PulsTime	Pulse duration for the reset signal to acknowledge a laser fault.	
	■ 0 … 9,999 s	
	Default: 0.1 s	
LSR_Timeout	Maximum wait time for a response from the laser during initialization	
	■ 09,999 s	
	Default: 5 s	
LSR_ShutterDelayCo nst	Shutter delay of the laser (= delay time for starting the laser switching actions before the taught point).	
	■ -10,000 ms … +9,999 ms	
	The value must be determined empirically.	
	Default: 30 ms	
LSR_ShutterOff	Delay time at end of welding, additional to LSR_ShutterDelayConst	
	This value is added to the laser shutter delay LSR_ShutterDelayConst if the laser is deactivated with the instruction Deactivate process .	
	■ -10,000 ms +9,999 ms	
	Default: 0 ms	

11 Appendix

Κυκα

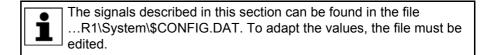
Variable Description Delay time at start of welding, additional to LSR ShutterDelayConst LSR ShutterOn This value is added to the laser shutter delay LSR_ShutterDelayConst if the laser is activated with the instruction Activate process. -10,000 ms ... +9,999 ms Default: 0 ms LSR_TestDelay Ony relevant if the instruction Laser test pulse is used to test the laser power or to determine the focus of the optics. Interval between activating the shielding gas and switching on the laser • 0 ... 9,999 ms Default: 0 ms LSR GasScale Scaling factor for the gas pressure 1 ... 65,535 Default: 65,535 S Int Cycl Submit watchdog pulse duration This variable can be used together with the output S Int Flag to monitor whether the submit interpreter is running cyclically. The monitoring only works usefully if the output S_Int_Flag is continuously TRUE. To achieve this, the value of S Int Cycl must be a little higher than the cycle time of the SPS.SUB program. 1 ... 9,999 ms Default: 0.048 ms LSR InitGasDly Delay with which the gas is initialized -2,000 ms ... +2,000 ms Default: 20 ms LSR GasCheckPress Only relevant if a proportional gas valve is used (LSR PropGasValve = TRUE). ure Gas pressure used when checking the process or cutting gases during initialization. The range of values depends on the valve used. Default: 10 bar LSR GasDlySwi Delay on triggering the instruction Switch gas. The gas is activated or deactivated after a delay. -2,000 ms ... +2,000 ms Default: 20 ms LSR_TimeToAvoidGa Wait time for the robot controller in order to eliminate the back-pressure sPress in the gas line. Corresponds to the gas preflow time on switching on the laser when the laser is restarted after a fault.

0 ... 9,999 s
 Note: This wait time is not taken into account in the instruction Laser test pulse.

Variable	Description
LSR_Stop_Inspection	Standstill monitoring at active laser
Time	If the robot is stationary and the laser power is active, the laser is deactivated after the time defined.
	■ 0 … 9,999 ms
	Default: 400 ms
PreDelay	Time difference between setting the laser parameters and starting the laser program
	■ 0 … 9,999 ms
	Default: 0 ms

11.2 Configuring LaserWeld

11.2.1 LaserWeld: analog inputs/outputs


NOTICE	Incorrect configuration of the internal analog channels can result in the laser working with incorrect parameters.	
Damage to the system may result.		

Analog outputs

Outputs 1 to 32 are available.

Output	Description	Default
LSWO_WireFeedHeatCha	Analog channel for the wire heater	8
n		
LSWO_WireFeedChannel	Analog channel for the wirefeeder	9

11.2.2 LaserWeld: signal outputs to the wire feed system

LASERWELD

GLOBALS OUTPUTS WIREFEEDER

Signal	Description	Туре	\$OUT[]
LSWO_WireFeedForward	Manual wire feed via status key enabled/ disabled	BOOL	301
LSWO_WireFeedStart	Wire feed enabled/disabled	BOOL	302
LSWO_WireFeedChannel	Analog channel for the wire feed \$ANOUT[9]	INT	—
LSWO_WireFeedHeatChan	Analog channel for the wire heater \$ANOUT[8]	INT	—
LSWO_WireFeedHeater	Wire heater enabled/disabled	BOOL	304

LASERWELD

GLOBALS WIRE CONTROL --> PLC

11 Appendix KUKA

Signal	Description	Туре	\$OUT[]
LSWO_ErrorWireFeeder	Wire feeder error (flag to PLC)	BOOL	315
LSWO_ErrorWireHeat	Wire heater error (flag to PLC)	BOOL	316

11.2.3 LaserWeld: signal inputs from the wire feed system

The signals described in this section can be found in the file R1\System\\$CONFIG.DAT. To adapt the values, the file must be edited.
R1\System\\$CONFIG.DAT. To adapt the values, the file must be
• edited.

LASERWELD GLOBALS

INPUTS WIREFEEDER

Signal	Description	Туре	\$IN[]
LSWI_WireFeedHeatContro	Wire heater ready	BOOL	1025
LSWI_WireFeedReady	Wire feeder ready	BOOL	1025

11.2.4 LaserWeld: process constants

The specified ranges of values contain the values that will be accepted by the system. They do not, however, constitute a recommendation of which values are useful in practice.

The variables described in this section can be found in the file Lsw_Main.dat in the directory R1\TP\LaserWeld. To display or change the values, select Display > Variable > Single from the main
menu.

Variable	Description	
LSW_UseWireFeed	Use wire controller.	
	TRUE = Wire controller is used.	
	FALSE = Wire controller is not used.	
	Default: TRUE	
LSW_HotWireOption	Use hot wire controller (optional).	
	TRUE = Option is used.	
	FALSE = Option is not used.	
	Default: FALSE	
LSW_UseWFDVelCtrl	Activate/deactivate velocity-dependent wire feed.	
d	TRUE = Wire feed rate is dependent on the robot velocity.	
	FALSE = Wire feed rate remains constant (at the value entered in the inline form).	
	Note : If this variable is modified, the robot controller must be rebooted with a cold start.	

Variable	Description
LSW_StaticRedWfdO	Reduced wire feed rate after welding error (optional)
ption	TRUE = The wire feed rate is reduced in the case of a start following a weld fault.
	FALSE = No reduced wire feed rate in the case of a start following a weld fault
	Default: FALSE
LSW_WfdDistanceMa x	Distance for which the reduced wire feed rate applies when the option LSW_StaticRedWfdOption is TRUE
	■ 0 9,999 mm
	Default: 5 mm
LSW_ReducedLimitW fdValue	Factor by which the wire feed rate is reduced when the option LSW_StaticRedWfdOption is TRUE. The wire feed rate is increased again when the distance specified in LSW_WfdDistanceMax has been covered.
	0 100 %
	Default: 30 %
LSW_WireHeatDelay	Switch on wire heater after or before the start of the laser.
Const	 -9,999 0.001 mm: Wire heater start delayed.
	 0.001 9,999 mm: Wire heater start brought forward.
	Default: 0 mm
LSW_WFD_DELAY	Wire feed trigger delay (set in the option window Media setting: wire).
	■ 0.001 … 9,999 s
	Default: 0 s
LSW_WireFeedMaxi mum	Maximum value for wire feed, which can be set in the option window Media setting: wire
	■ 0 … 9,999 m/min
	Default: 25 m/min
LSW_WireFeedMinim um	Minimum value for wire feed, which can be set in the option window Media setting: wire
	• 0 9,999 m/min
	Default: 0 m/min
LSW_WireHeatMaxi	Maximum wire temperature
mum	0 100 %
	Default: 100 %
LSW_WireHeatMinim	Minimum wire temperature
um	0 100 %
	Default: 0 %
LSW_WFD_AnalogMi nValue	Scaling factor for the minimum wire feed on the analog channel \$ANOUT[9]
	0.0 1.0
	Default: 0.0
LSW_WFD_AnalogM axValue	Scaling factor for the maximum wire feed on the analog channel \$ANOUT[9]
	0.0 1.0
	Default: 1.0

11 Appendix KUKA

Variable	Description
LSW_Heat_AnalogMi nValue	Scaling factor for the minimum voltage on the analog channel for the wire heater \$ANOUT[8]
	0.0 1.0
	Default: 0.0
LSW_WFD_AnalogM axValue	Scaling factor for the maximum voltage on the analog channel for the wire heater \$ANOUT[8]
	0.0 1.0
	Default: 1.0

11.3 Configuring LaserCut

11.3.1 LaserCut: analog inputs/outputs

The numbers for inputs/outputs, interrupts, timers and cyclical flags must only be assigned once in the entire robot controller.

NOTICE Incorrect configuration of the internal analog channels can result in the laser working with incorrect parameters. Damage to the system may result.

Analog outputs

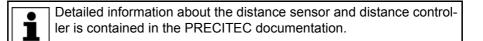
Outputs 1 to 32 are available.

Output	Description	Default
LSCO_LscDistance	Analog channel for the working distance of the sensor	5
LSCO_LscTipComp	Analog channel for tip compensation of sensor	6
LSCO_LscProgPos	Analog channel for the programmed position of sensor	7

Timer

Timers 1 to 32 are available.

Timer	Description	Default
LSC_TC_PrecPLC	Timer number for the sensor status keys	19


Cycflags

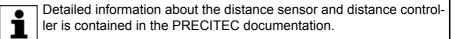
NOTICE If the number of cyclical flags is changed, this may result in a double assignment. Furthermore, the numbers of the cyclical flags for the LaserTech monitoring functions may be overwritten. This can cause damage to the system.

Cycflags 1 to 32 are available.

Cycflag	Description	Default
LSR_CF_GasCtrl	Cycflag number for the sensor monitoring	13

11.3.2 LaserCut: signal outputs to the sensor

KUKA



The signals described in this section can be found in the fileR1\System\\$CONFIG.DAT. To adapt the values, the file must be edited.

LASERCUT GLOBALS

Signal	Description	Туре	\$OUT[]
LSCO_SnsrWorkdistance2	Workdistance 2*	BOOL	219
LSCO_SnsrWorkdistance3	Workdistance 3*	BOOL	220
LSCO_SnsrLargeRange	Use extended measuring range.	BOOL	221
LSCO_SnsrEnableManual	Enable/disable manual mode of the sen- sor.	BOOL	217
LSCO_SnsrAuto	Enable/disable manual mode of the sen- sor.	BOOL	218
LSCO_SnsrHome	Move sensor to programmed position.	BOOL	222
LSCO_SnsrReference	Execute reference run.	BOOL	999
LSCO_SnsrManualUp	Move sensor up.	BOOL	223
LSCO_SnsrManualDown	Move sensor down.	BOOL	224
LSCO_SnsrSlowMotion	Enable slow motion mode.	BOOL	225
LSCO_SnsrDataWord	Internal word for sensor control. Com- prises the entire output range.	Word	201 232
LSCO_LscDistance	Analog channel for the working distance of the sensor \$ANOUT[5]	INT	-
LSCO_LscDistance	Analog channel for tip compensation of the sensor \$ANOUT[6]	INT	_
LSCO_LscProgPos	Analog channel for the programmed position of the sensor \$ANOUT[7]	INT	—

11.3.3 LaserCut: signal inputs from the sensor

The signals described in this section can be found in the file ...R1\System\\$CONFIG.DAT. To adapt the values, the file must be edited.

LASERCUT GLOBALS

Signal	Description	Туре	\$IN[]
LSCI_SnsrOutOfRange	Sensor is outside of the measuring range.	BOOL	213
LSCI_SnsrCollision	Sensor collision detection	BOOL	214
LSCI_SnsrPosReached	Sensor position reached	BOOL	215
LSCI_SnsrNoError	No sensor error	BOOL	216
LSCI_SnsrReady	Sensor is ready.	BOOL	217
LSCI_SnsrRefErr	Sensor reference error	BOOL	443
LSCI_SnsrCableCut	Monitoring of the sensor cable (cable break)	BOOL	1024

KUKA

11.3.4 LaserCut: process constants

The specified ranges of values contain the values that will be accepted by the system. They do not, however, constitute a recommendation of which values are useful in practice.

The variables described in this section can be found in the file Lsc_Main.dat in the directory R1\TP\LaserCut. To display or change the values, select **Display > Variable > Single** from the main menu.

Variable	Description
LSC_AnaCutDistance	The cutting distance set in the inline form Switch sensor is transferred as an analog value. (Unit: 1/10 mm)
	TRUE = Cutting distance is transferred as an analog value.
	FALSE = Cutting distance is transferred via a program number.
	Default: FALSE
	Note : If this variable is modified, the robot controller must be rebooted with a cold start.
LSC_AnaCutScale	Only relevant if the cutting distance is transferred as an analog value (LSC_AnaCutDistance = TRUE)
	Scaling of the cutting distance
	Default: 1/655.35
LSC_ProgPos	Only relevant if the cutting distance is transferred as an analog value (LSC_AnaCutDistance = TRUE)
	Programmed position of the sensor (= home position of the sensor). Refers to the zero position of the sensor.
	 3 9,999 Unit: 1/10 mm
	Default: 60
LSC_DefProgPos	Only relevant if the cutting distance is transferred as an analog value (LSC_AnaCutDistance = TRUE)
	Programmed position of the sensor on start of control
	0 300
	Unit: 1/10 mm
	Default: 150
LSC_MaxProgPos	Only relevant if the cutting distance is transferred as an analog value (LSC_AnaCutDistance = TRUE)
	Maximum programmed position of the sensor
	0 300
	Unit: 1/10 mm
	Default: 300
LSC_TipComp1	Maximum permissible contact duration during cutting (tip compensation time 1)
	■ 1…9,999 ms
	Default: 250 ms

Variable	Description		
LSC_TipComp2	Maximum permissible contact duration during piercing (tip compensa- tion time 2)		
	■ 1 … 9,999 ms		
	Default: 250 ms		
LSC_GasRinseTime	Gas flow time during gas change after piercing		
	■ 1 9,999 ms		
	Default: 2000 ms		

Κυκα

12 KUKA Service

12.1 Requesting support

Introduction This documentation provides information on operation and operator control, and provides assistance with troubleshooting. For further assistance, please contact your local KUKA subsidiary.

Information The following information is required for processing a support request:

- Model and serial number of the manipulator
- Model and serial number of the controller
- Model and serial number of the linear unit (if present)
- Model and serial number of the energy supply system (if present)
- Version of the control software
- Optional software or modifications
- Archive of the software
- Application used
- External axes used
- Description of the problem, duration and frequency of the fault

12.2 KUKA Customer Support

Availability KUKA Customer Support is available in many countries. Please do not hesitate to contact us if you have any questions.

ArgentinaRuben Costantini S.A. (Agency)Luis Angel Huergo 13 20Parque Industrial2400 San Francisco (CBA)ArgentinaTel. +54 3564 421033Fax +54 3564 428877ventas@costantini-sa.com

Australia Headland Machinery Pty. Ltd. Victoria (Head Office & Showroom) 95 Highbury Road Burwood Victoria 31 25 Australia Tel. +61 3 9244-3500 Fax +61 3 9244-3501 vic@headland.com.au www.headland.com.au

Belgium	KUKA Automatisering + Robots N.V. Centrum Zuid 1031 3530 Houthalen Belgium Tel. +32 11 516160 Fax +32 11 526794 info@kuka.be www.kuka.be
Brazil	KUKA Roboter do Brasil Ltda. Travessa Claudio Armando, nº 171 Bloco 5 - Galpões 51/52 Bairro Assunção CEP 09861-7630 São Bernardo do Campo - SP Brazil Tel. +55 11 4942-8299 Fax +55 11 2201-7883 info@kuka-roboter.com.br www.kuka-roboter.com.br
Chile	Robotec S.A. (Agency) Santiago de Chile Chile Tel. +56 2 331-5951 Fax +56 2 331-5952 robotec@robotec.cl www.robotec.cl
China	KUKA Robotics China Co.,Ltd. Songjiang Industrial Zone No. 388 Minshen Road 201612 Shanghai China Tel. +86 21 6787-1888 Fax +86 21 6787-1803 www.kuka-robotics.cn
Germany	KUKA Roboter GmbH Zugspitzstr. 140 86165 Augsburg Germany Tel. +49 821 797-4000 Fax +49 821 797-1616 info@kuka-roboter.de www.kuka-roboter.de

France	KUKA Automatisme + Robotique SAS
	Techvallée
	6, Avenue du Parc
	91140 Villebon S/Yvette
	France
	Tel. +33 1 6931660-0
	Fax +33 1 6931660-1
	commercial@kuka.fr
	www.kuka.fr
India	KUKA Robotics India Pvt. Ltd.
	Office Number-7, German Centre,
	Level 12, Building No 9B
	DLF Cyber City Phase III
	122 002 Gurgaon
	Haryana
	India
	Tel. +91 124 4635774
	Fax +91 124 4635773
	info@kuka.in
	www.kuka.in
Italy	KUKA Roboter Italia S.p.A.
	Via Pavia 9/a - int.6
	10098 Rivoli (TO)
	Italy
	Tel. +39 011 959-5013
	Fax +39 011 959-5141
	kuka@kuka.it
	www.kuka.it
Japan	KUKA Robotics Japan K.K.
	YBP Technical Center
	134 Godo-cho, Hodogaya-ku
	Yokohama, Kanagawa
	240 0005
	Japan
	Tel. +81 45 744 7691
	Fax +81 45 744 7696
	info@kuka.co.jp
Canada	KUKA Robotics Canada Ltd.
Ganada	6710 Maritz Drive - Unit 4
	Mississauga
	L5W 0A1
	Ontario
	Canada
	Tel. +1 905 670-8600
	Fax +1 905 670-8604
	info@kukarobotics.com www.kuka-robotics.com/canada

KUKA.LaserTech 3.1

Korea	KUKA Robotics Korea Co. Ltd. RIT Center 306, Gyeonggi Technopark 1271-11 Sa 3-dong, Sangnok-gu Ansan City, Gyeonggi Do 426-901 Korea Tel. +82 31 501-1451 Fax +82 31 501-1461 info@kukakorea.com
Malaysia	KUKA Robot Automation Sdn Bhd South East Asia Regional Office No. 24, Jalan TPP 1/10 Taman Industri Puchong 47100 Puchong Selangor Malaysia Tel. +60 3 8061-0613 or -0614 Fax +60 3 8061-7386 info@kuka.com.my
Mexico	KUKA de México S. de R.L. de C.V. Progreso #8 Col. Centro Industrial Puente de Vigas Tlalnepantla de Baz 54020 Estado de México Mexico Tel. +52 55 5203-8407 Fax +52 55 5203-8148 info@kuka.com.mx www.kuka-robotics.com/mexico
Norway	KUKA Sveiseanlegg + Roboter Sentrumsvegen 5 2867 Hov Norway Tel. +47 61 18 91 30 Fax +47 61 18 62 00 info@kuka.no
Austria	KUKA Roboter Austria GmbH Vertriebsbüro Österreich Regensburger Strasse 9/1 4020 Linz Austria Tel. +43 732 784752 Fax +43 732 793880 office@kuka-roboter.at www.kuka-roboter.at

	K	U	K	Α
--	---	---	---	---

Poland	KUKA Roboter Austria GmbH Spółka z ograniczoną odpowiedzialnością Oddział w Polsce UI. Porcelanowa 10 40-246 Katowice Poland Tel. +48 327 30 32 13 or -14 Fax +48 327 30 32 26 ServicePL@kuka-roboter.de
Portugal	KUKA Sistemas de Automatización S.A. Rua do Alto da Guerra n° 50 Armazém 04 2910 011 Setúbal Portugal Tel. +351 265 729780 Fax +351 265 729782 kuka@mail.telepac.pt
Russia	OOO KUKA Robotics Rus Webnaja ul. 8A 107143 Moskau Russia Tel. +7 495 781-31-20 Fax +7 495 781-31-19 kuka-robotics.ru
Sweden	KUKA Svetsanläggningar + Robotar AB A. Odhners gata 15 421 30 Västra Frölunda Sweden Tel. +46 31 7266-200 Fax +46 31 7266-201 info@kuka.se
Switzerland	KUKA Roboter Schweiz AG Industriestr. 9 5432 Neuenhof Switzerland Tel. +41 44 74490-90 Fax +41 44 74490-91 info@kuka-roboter.ch www.kuka-roboter.ch

Spain	KUKA Robots IBÉRICA, S.A. Pol. Industrial Torrent de la Pastera Carrer del Bages s/n 08800 Vilanova i la Geltrú (Barcelona) Spain Tel. +34 93 8142-353 Fax +34 93 8142-950 Comercial@kuka-e.com www.kuka-e.com
South Africa	Jendamark Automation LTD (Agency) 76a York Road North End 6000 Port Elizabeth South Africa Tel. +27 41 391 4700 Fax +27 41 373 3869 www.jendamark.co.za
Taiwan	KUKA Robot Automation Taiwan Co., Ltd. No. 249 Pujong Road Jungli City, Taoyuan County 320 Taiwan, R. O. C. Tel. +886 3 4331988 Fax +886 3 4331948 info@kuka.com.tw www.kuka.com.tw
Thailand	KUKA Robot Automation (M)SdnBhd Thailand Office c/o Maccall System Co. Ltd. 49/9-10 Soi Kingkaew 30 Kingkaew Road Tt. Rachatheva, A. Bangpli Samutprakarn 10540 Thailand Tel. +66 2 7502737 Fax +66 2 6612355 atika@ji-net.com www.kuka-roboter.de
Czech Republic	KUKA Roboter Austria GmbH Organisation Tschechien und Slowakei Sezemická 2757/2 193 00 Praha Horní Počernice Czech Republic Tel. +420 22 62 12 27 2 Fax +420 22 62 12 27 0 support@kuka.cz

Hungary	KUKA Robotics Hungaria Kft. Fö út 140 2335 Taksony Hungary Tel. +36 24 501609 Fax +36 24 477031 info@kuka-robotics.hu
USA	KUKA Robotics Corporation 51870 Shelby Parkway Shelby Township 48315-1787 Michigan USA Tel. +1 866 873-5852 Fax +1 866 329-5852 info@kukarobotics.com www.kukarobotics.com
UK	KUKA Automation + Robotics Hereward Rise Halesowen B62 8AN UK Tel. +44 121 585-0800 Fax +44 121 585-0900 sales@kuka.co.uk

Index

Α

Analog inputs/outputs, LaserCut 93 Analog inputs/outputs, LaserTech 81 Analog inputs/outputs, LaserWeld 90 AnoutBypass 86 Appendix 81 Arc 58 Areas of application 9

С

Communication 9 Configuration 21 CrossJet 8, 18, 85, 86 Cutting pattern, defining 54 Cyclical flags, LaserCut 93 Cyclical flags, LaserTech 81

D

Delay times, defining 28 Distance sensor, switching 52 Documentation, industrial robot 7

Ε

Example programs 63

F

Functions 9

G

Gas postflow time 40, 60 Gas preflow time 38, 59 Gas pressure 38, 39, 40, 59, 60, 89 Gas types, configuring 23 Gas, initializing 50 Gas, on/off 50 Geo motion data 55 Geometry data 55

Н

Hardware 15

I

Inline forms 27 Inputs from the laser 83 Inputs from the sensor 94 Inputs from the welding periphery 85 Installation 15 Installation, LaserTech 15 Intended use 10 Interfaces, for functional expansions 70 Interrupts, LaserTech 81 Introduction 7

Κ

Knowledge, required 7 KUKA Customer Support 97

L

Laser control 45 Laser cutting 54 Laser cutting, parameters 61 Laser focus 36 Laser functions 29 Laser power, drop time 43 Laser power, ramp length 42, 44 Laser power, rise time 41, 61 Laser program 8, 22 Laser test pulse 36 Laser, activating 29 Laser, deactivating 47 Laser, enabling 46 Laser, initializing 45 Laser, requesting 47 LaserCut, analog inputs/outputs 93 LaserCut, process constants 95 LaserCut, timer 93 LaserTech, analoge inputs/outputs 81 LaserTech, cyclical flags 81 LaserTech, Interrupts 81 LaserTech, overview 9 LaserTech, process constants 88 LaserTech, Timer 81 LaserWeld, analog inputs/outputs 90 LaserWeld, process constants 91 Light path 83, 84, 87 Line 54 LSC AnaCutDistance 52, 95 LSC_AnaCutScale 95 LSC_DefProgPos 95 LSC GasRinseTime 96 LSC MaxProgPos 95 LSC ProgPos 95 LSC SecDistance 52 LSC SecInDly 52 LSC_TC_PrecPLC 93 LSC_TipComp1 95 LSC_TipComp2 96 LSCI SnsrCableCut 94 LSCI SnsrCollision 94 LSCI SnsrNoError 94 LSCI SnsrOutOfRange 94 LSCI SnsrPosReached 94 LSCI_SnsrReady 94 LSCI SnsrRefErr 94 LSCO LscDistance 93, 94 LSCO LscProgPos 93, 94 LSCO LscTipComp 93 LSCO SnsrAuto 94 LSCO SnsrDataWord 94 LSCO SnsrEnableManual 94 LSCO_SnsrHome 94 LSCO SnsrLargeRange 94 LSCO SnsrManualDown 94 LSCO SnsrManualUp 94 LSCO SnsrReference 94

KUKA

KUKA.LaserTech 3.1

LSCO_SnsrSlowMotion 94 LSCO SnsrWorkdistance2 94 LSCO SnsrWorkdistance3 94 LSR AnoutCheck 81 LSR CF AnoutCheck 82 LSR CF GasCtrl 82, 93 LSR CF LaserCtrl 82 LSR_CF_MediaCtrl 82 LSR_CF_STEP 82 LSR_CF_STEPCTRL 82 LSR_CF_UsrTech 82 LSR CrossJetOption 86 LSR_GasCheckPressure 89 LSR GasDlySwi 89 LSR GasScale 89 LSR InitGasDly 89 LSR InterrAntiCollission 81 LSR InterruptDistSensor 81 LSR_InterruptLaserSafety 81 LSR InterruptMedias 81 LSR InterruptStepMon 81 LSR InterruptUsrTech 81 LSR_LsrFiberMirrorOption 87 LSR MIN STBY 88 LSR MPI Interface 86 LSR NoProc 87 LSR PropGasValve 24, 25, 87 LSR PulsTime 88 LSR_ShutterDelayConst 28, 88 LSR_ShutterOff 28, 88 LSR_ShutterOn 28, 89 LSR_Stop_InspectionTime 27, 90 LSR_TC_Check 82 LSR_TC_PostGas 81 LSR TC PreFlowGas 81 LSR TC STEP 82 LSR TestDelay 89 LSR_Timeout 88 LSR_TimeToAvoidGasPress 89 LSR_UseGas 87 LSR_UsePwrVelCtrld 9, 41, 60, 87 LSR_UserErrorFLAG 86 LSR UseRootFlag 88 LsrCutCircle 55 LsrCutHex 55 LsrCutRect 55 LsrCutSlot 55 LSRI_AntiCollisionDev 85 LSRI_CrossJet 85 LSRI_GasPressure 25, 81, 85 LSRI_LsrActive 84 LSRI_LsrAssigned 84 LSRI LsrExternEnabled 84 LSRI LsrFailure 84 LSRI LsrFiberNo 84 LSRI LsrFiberSafetyCode 84 LSRI LsrInternFault 84 LSRI LsrPilotOn 84 LSRI_LsrProgAbort 84 LSRI_LsrProgActive 84 LSRI_LsrProgEnd 84

LSRI_LsrSet1 84 LSRI LsrSet2 84 LSRI LsrSet3 84 LSRI LsrShutterClosed 84 LSRI LsrStandby 84 LSRI LsrWarnLampOn 84 LSRI UsrInput1 85 LSRI_UsrInput2 85 LSRO_AntiCollissionDev 84 LSRO_ColdApplication 85 LSRO_ColdFor1Seam 84 LSRO ColdFor1Section 84 LSRO ColdForEver 85 LSRO CrossJet 85 LSRO Error Bypass 86 LSRO_Error_Cell 84 LSRO_Error_Media 84 LSRO_Error_Sensor 84 LSRO_GasEnable 85 LSRO_GasPressure 81, 85 LSRO LsrDataWord0 83 LSRO LsrDataWord3 83 LSRO LsrDataWord4 83 LSRO LsrExternControl 83 LSRO LsrFaultExtern 82 LSRO_LsrFiber 83 LSRO LsrLaserNr 83 LSRO LsrOn 83 LSRO LsrOperationOff 83 LSRO_LsrPilotOn 82 LSRO_LsrPrgNrBCD1 83 LSRO_LsrPrgNrBCD10 83 LSRO LsrPrgSetDual 83 LSRO LsrPwr 81, 83 LSRO LsrRampTime 83 LSRO LsrRequest 47, 82 LSRO_LsrReset 82 LSRO_LsrRmpDownEndVal 83 LSRO LsrRmpDownStartVal 83 LSRO_LsrRmpUpEndVal 83 LSRO_LsrRmpUpStartVal 83 LSRO_LsrRobotNr 83 LSRO LsrStandby 83 LSRO_LsrStartDynamic 82 LSRO LsrStartStatic 82 LSRO_LsrStopProgram 82 LSRO_LsrSync1 82 LSRO_LsrSync2 82 LSW_Heat_AnalogMinValue 93 LSW HotWireOption 91 LSW_ReducedLimitWfdValue 92 LSW_StaticRedWfdOption 92 LSW UseWFDVelCtrld 91 LSW UseWireFeed 91 LSW_WFD_AnalogMaxValue 92, 93 LSW_WFD_AnalogMinValue 92 LSW WFD DELAY 92 LSW WfdDistanceMax 92 LSW_WireFeedMaximum 92 LSW_WireFeedMinimum 92

LSW_WireHeatDelayConst 92

LSW_WireHeatMaximum 92 LSW_WireHeatMinimum 92 LSWI_WireFeedHeatControl 91 LSWI_WireFeedReady 91 LSWO_ErrorWireFeeder 91 LSWO_ErrorWireHeat 91 LSWO_WireFeedChannel 90 LSWO_WireFeedHeatChan 90 LSWO_WireFeedHeater 90 LSWO_WireFeedStart 90

Μ

Media control 50 Menus 17 Messages 75 Minimum wire feed rate 38, 39

0

Operation 17 Outputs to the laser 82 Outputs to the sensor 93 Outputs to the welding periphery 84 Outputs to the wire feed system 90

Ρ

Pilot laser 82, 84 Pilot laser, configuration 25 Power ramps 27 PreDelay 90 Process constants, LaserCut 95 Process constants, LaserTech 88 Process constants, LaserWeld 91 Process gas 8 Process options 86 Process, deactivating 33 Process, switching 31 Product description 9 Programming tips 27 Programming, inline forms 27 Programming, system integrators 67 Programming, User 27 Proportional gas valve 24, 87

R

Ramp time, modification 26 Root gas 8

S

S_Int_Cycl 89 S_Int_Flag 86 Safety 13 Safety instructions 7 Sensor control 52 Sensor, settings 53 Service, KUKA Roboter 97 Single (menu item) 67 Software 15 Spline 27, 54 Standstill monitoring 78 Start-up 21 Status keys 17, 18 Step seams 35 Support request 97 Switching points 28 System flags 85 System outputs 85 System requirements 15

Т

Target group 7 Terms used 8 Timer, LaserCut 93 Timer, LaserTech 81 Trademarks 8 Training 7

U

Uninstallation, LaserTech 16 Update, LaserTech 15 Use, intended 10

W

Warnings 7 Watchdog, output 86 Wire, cutting 51 Wirefeed 38, 39 Wirefeed delay 38, 39, 40

KUKA.LaserTech 3.1